Startseite Preparation and mechanical properties of poly(p-phenylene sulfide) nanofiber sheets obtained by CO2 laser supersonic multi-drawing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Preparation and mechanical properties of poly(p-phenylene sulfide) nanofiber sheets obtained by CO2 laser supersonic multi-drawing

  • Hiroyuki Koyama EMAIL logo , Yuta Watanabe und Akihiro Suzuki
Veröffentlicht/Copyright: 18. April 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, poly(p-phenylene sulfide) (PPS) nanofiber sheets were fabricated by winding PPS nanofibers onto a spool. Previously, PPS nanofibers have been prepared by irradiating a PPS fiber with a CO2 laser while drawing it at supersonic speeds by single-fiber injection through an orifice. Here, we incorporated the nanofibers obtained into large nanofiber sheets and determined their mechanical properties. Supersonic air was introduced into a vacuum chamber through eight fiber injection orifices to obtain large PPS nanofiber sheets. The nanofibers were collected for 10 min, producing a rectangle sheet with dimensions of 17 cm×18 cm, a thickness of 70 μm, and an average fiber diameter of 700 nm. The dependence of the sheet’s mechanical properties on winding speed was investigated in the machine direction (MD) and traverse direction (TD) at four winding speeds.

Acknowledgments:

The authors are grateful to Dr. A. Kato (Nissan Arc, Ltd.) for stimulating discussions. We are also grateful to Polyplastics Co., Ltd. for providing the poly(p-phenylene sulfide) samples.

References

[1] Hill Jr. HW, Brady DG. Poly. Eng. Sci. 1976, 16, 831–835.10.1002/pen.760161211Suche in Google Scholar

[2] Lopez CL, Wilkes GL. J. Macromol. Sci. Part C: Polym. Rev. 1989, 29, 83–151.10.1080/07366578908055165Suche in Google Scholar

[3] Yeo YJ, Jeon DW, Kim CS, Choi SH, Cho KS, Lee YK, Kim CK. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2005, 72B, 86–93.10.1002/jbm.b.30121Suche in Google Scholar

[4] Meng J, Song L, Meng J, Kong H, Zhu G, Wang C, Xu L, Xie S, Xu HJ. Biomed. Mater. Res. Part A 2006, 79A, 298–306.10.1002/jbm.a.30787Suche in Google Scholar

[5] Boland ED, Telemeco TA, Simpson DG, Wnek GE, Bowlin GL. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2004, 71B, 144–152.10.1002/jbm.b.30105Suche in Google Scholar

[6] Ding B, Kimura E, Sato T, Fujita S, Shiratori S. Polymer 2004, 45, 1895–1902.10.1016/j.polymer.2004.01.026Suche in Google Scholar

[7] Gupta P, Wilkes GL. Polymer 2003, 44, 6353–6359.10.1016/S0032-3861(03)00616-5Suche in Google Scholar

[8] Ayutsede J, Ghandi M, Sukigara S, Micklus M, Chen HE, Ko F. Polymer 2005, 46, 1625–1634.10.1016/j.polymer.2004.11.029Suche in Google Scholar

[9] Fong H. Polymer 2004, 45, 2427–2432.10.1016/j.polymer.2004.01.067Suche in Google Scholar

[10] Kim JS, Reneker DH. Polym. Eng. Sci. 1999, 39, 849–854.10.1002/pen.11473Suche in Google Scholar

[11] Deitzel JM, Kleinmeyer J, Harris D, Tan NCB. Polymer 2001, 42, 261–272.10.1016/S0032-3861(00)00250-0Suche in Google Scholar

[12] Pedicini A, Farris RJ. Polymer 2003, 44, 6857–6862.10.1016/j.polymer.2003.08.040Suche in Google Scholar

[13] Varabhas JS, Chase GG, Reneker DH. Polymer 2008, 49, 4226–4229.10.1016/j.polymer.2008.07.043Suche in Google Scholar

[14] Zhou H, Green TB, Joo LY. Polymer 2006, 47, 7497–7505.10.1016/j.polymer.2006.08.042Suche in Google Scholar

[15] Dalton PD, Grafahrend D, Klinkhammer K, Klee D, Möller M. Polymer 2007, 48, 6823–6833.10.1016/j.polymer.2007.09.037Suche in Google Scholar

[16] Lyons J, Li C, Ko F. Polymer 2004, 45, 7597–7603.10.1016/j.polymer.2004.08.071Suche in Google Scholar

[17] Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS. Polymer 2007, 48, 3306–3316.10.1016/j.polymer.2007.04.005Suche in Google Scholar

[18] Hegde RR, Bhat GS. J. Appl. Polym. Sci. 2010, 115, 1062–1072.10.1002/app.31089Suche in Google Scholar

[19] Hegde RR, Bhat GS. J. Appl. Polym. Sci. 2010, 118, 3141–3155.10.1002/app.32304Suche in Google Scholar

[20] Boker S, Gu B, Dirmer M, Delicado R, Sen A, Jackson BR, Badding JV. Polymer 2006, 47, 8337–8343.10.1016/j.polymer.2006.09.069Suche in Google Scholar

[21] Koyama H, Watanabe Y, Suzuki A. J. Appl. Polym. Sci. 2014, 131, 40922.10.1002/app.40922Suche in Google Scholar

[22] Suzuki A, Arino K. Polymer 2010, 51, 1830–1836.10.1016/j.polymer.2010.02.026Suche in Google Scholar

[23] Suzuki A, Tanizawa K. Polymer 2009, 50, 913–921.10.1016/j.polymer.2008.12.037Suche in Google Scholar

[24] Maemura E, Cakmak M, White JL. Polym. Eng. Sci. 1989, 29, 140–150.10.1002/pen.760290210Suche in Google Scholar

[25] Suzuki A, Khono T, Kunugi T. J. Polym. Sci. Part B: Polym. Phys.1998, 36, 1731–1738.10.1002/(SICI)1099-0488(19980730)36:10<1731::AID-POLB14>3.0.CO;2-ASuche in Google Scholar

[26] Suzuki A, Akaoka Y. Eur. Polym. J. 2009, 45, 278–283.10.1016/j.eurpolymj.2008.10.035Suche in Google Scholar

[27] Carr PL, Ward IM, Polymer 1987, 28, 2070–2076.10.1016/0032-3861(87)90043-7Suche in Google Scholar

Received: 2015-7-18
Accepted: 2016-3-7
Published Online: 2016-4-18
Published in Print: 2017-1-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2015-0320/html
Button zum nach oben scrollen