Startseite FIB/SEM serial sectioning as a versatile tool for microstructural analysis
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

FIB/SEM serial sectioning as a versatile tool for microstructural analysis

  • M. Engstler

    Michael Engstler studied Material Science and Engineering at Saarland University in Saarbrücken Germany. He is group leader at the chair of Functional Materials at Saarland University and project leader at the Materials Engineering Center Saarland (MECS). He is currently head of the DGM expert committee for Materialography and in the board of the directors of the International Metallographic Society IMS.

    EMAIL logo
    und F. Mücklich

    Frank Mücklich studied Physical Metallurgy at the Mining Academy in Freiberg, Germany, and worked at the Max-Planck-Institute for Metals Research in Stuttgart. He is Professor for Functional Materials at Saarland University, Director of the Materials Engineering Center Saarland (MECS) and Chairman of the European School of Materials (EUSMAT) as well as Editor of Practical Metallography.

Veröffentlicht/Copyright: 21. Oktober 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

FIB/SEM tomography is a serial sectioning method in which the cross-sectional area of the sample is stepwise removed with a focused ion beam (FIB) and the exposed cross-sectional area is imaged with a scanning electron microscope (SEM). All imaging techniques of the SEM can be used, which allows the application to a wide range of materials science questions. On the one hand, resolutions of a few nm can be achieved, and on the other hand, volumes with edge lengths of 100 μm and more can be examined. This article gives an overview of the current state of the art and the practical implementation of FIB/ SEM serial sectioning. The special aspects of the integration of energy dispersive X-ray spectroscopy (EDS) and electron backscatter diffraction (EBSD) are also discussed.

Kurzfassung

Die FIB/REM-Serienschnitttomographie ist ein Serienschnittverfahren, bei der die Querschnittsfläche der Probe schrittweise mit einem fokussiertem Ionenstrahl (FIB) abgetragen und die freigelegte Querschnittsfläche mit dem Rasterelektronenmikroskop (REM) abgebildet wird. Es können alle Abbildungsverfahren des REM verwendet werden, was die Anwendung in einer Vielzahl von materialwissenschaftlichen Fragestellungen erlaubt. Dabei sind einerseits Auflösungen von wenigen nm erreichbar, andererseits können Volumina mit 100 μm Kantenlänge und mehr untersucht werden. In diesem Artikel soll ein Überblick über den aktuellen Stand der Technik und die praktische Durchführung einer FIB/REM-Serienschnitttomographie gegeben werden. Auf die Besonderheiten bei der Integration von energiedispersive Röntgenspektroskopie (EDX) und Elektronenrückstreubeugung (EBSD – electron backscatter diffraction) wird ebenfalls eingegangen.

About the authors

M. Engstler

Michael Engstler studied Material Science and Engineering at Saarland University in Saarbrücken Germany. He is group leader at the chair of Functional Materials at Saarland University and project leader at the Materials Engineering Center Saarland (MECS). He is currently head of the DGM expert committee for Materialography and in the board of the directors of the International Metallographic Society IMS.

F. Mücklich

Frank Mücklich studied Physical Metallurgy at the Mining Academy in Freiberg, Germany, and worked at the Max-Planck-Institute for Metals Research in Stuttgart. He is Professor for Functional Materials at Saarland University, Director of the Materials Engineering Center Saarland (MECS) and Chairman of the European School of Materials (EUSMAT) as well as Editor of Practical Metallography.

References / Literatur

[1] Mücklich, F.; Engstler, M.; Britz, D.; Gola, J.: Serial sectioning techniques – A versatile method for three-dimensional microstructural imaging. Prakt. Metallogr. Metallogr. 55 (2018) 8, pp. 569–578. 10.3139/147.110535Suche in Google Scholar

[2] Holzer, L.; Indutnyi, F.; Gasser, P.; Münch, B.; Wegmann, M.: Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. J. Microsc. 216 (2004) 1, pp. 84–95. 10.1111/j.0022-2720.2004.01397.xSuche in Google Scholar PubMed

[3] Spowart, J. E.; Mullens, H. M.; Puchala, B. T.: Collecting and Analyzing Microstructures in Three Dimensions: A Fully Automated Approach. Jom 55 (2003) 10, pp. 35–37. 10.1007/s11837-003-0173-0Suche in Google Scholar

[4] Echlin, M. P.; Straw, M.; Randolph, S.; Filevich, J.; Pollock, T. M.: The TriBeam system: Femtosecond laser ablation in situ SEM. Mater. Charact. 100 (2015), pp. 1–12. 10.1016/j.matchar.2014.10.023Suche in Google Scholar

[5] Desbois, G. et al.: Argon broad ion beam tomography in a cryogenic scanning electron microscope: A novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid. J. Microsc. 249 (2013) 3, pp. 215–235. 10.1111/jmi.12011Suche in Google Scholar PubMed

[6] Hashimoto, T.; Thompson, G. E.; Zhou, X.; Withers, P. J.: 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy. Ultramicroscopy 163 (2016), pp. 6–18. 10.1016/j.ultramic.2016.01.005Suche in Google Scholar PubMed

[7] Zankel, A.; Wagner, J.; Poelt, P.: Serial sectioning methods for 3D investigations in materials science. Micron 62 (2014), pp. 66–78. 10.1016/j.micron.2014.03.002Suche in Google Scholar PubMed

[8] Efimov, A. E.; Tonevitsky, A. G.; Dittrich, M.; Matsko, N. B.: Atomic force microscope (AFM) combined with the ultramicrotome: A novel device for the serial section tomography and AFM/ TEM complementary structural analysis of biological and polymer samples. J. Microsc. 226 (2007) 3, pp. 207–217. 10.1111/j.1365-2818.2007.01773.xSuche in Google Scholar PubMed

[9] Yio, M. H. N.; Mac, M. J.; Wong, H. S.; Buenfeld, N. R.: 3D imaging of cement-based materials at submicron resolution by combining laser scanning confocal microscopy with serial sectioning. J. Microsc. 258 (2015) 2, pp. 151–169. 10.1111/jmi.12228Suche in Google Scholar PubMed

[10] Inkson, B. J.; Mulvihill, M.; Möbus, G.: 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scr. Mater. 45 (2001) 7, pp. 753–758. 10.1016/S1359-6462(01)01090-9Suche in Google Scholar

[11] Prill, T.; Schladitz, K.; Jeulin, D.; Faessel, M.; Wieser, C.: Morphological segmentation of FIB-SEM data of highly porous media. J. Microsc. 250 (2013) 2, pp. 77–87. 10.1111/jmi.12021Suche in Google Scholar PubMed

[12] Burnett, T. L. et al.: Large volume serial section tomography by Xe Plasma FIB dual beam microscopy. Ultramicroscopy 161 (2016), pp. 119–129. 10.1016/j.ultramic.2015.11.001Suche in Google Scholar PubMed

[13] Konrad, J.; Zaefferer, S.; Raabe, D.: Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Mater. 54 (2006) 5, pp. 1369–1380. 10.1016/j.actamat.2005.11.015Suche in Google Scholar

[14] Lasagni, F.; Lasagni, A.; Holzapfel, C.; Mücklich, F.; Degischer, H. P.: Three dimensional characterization of unmodified and Sr-modified Al-Si eutectics by FIB and FIB EDX tomography. Adv. Eng. Mater. 8 (2006) 8, pp. 719–723. 10.1002/adem.200500276Suche in Google Scholar

[15] Lasagni, F.; Lasagni, A.; Marks, E.; Holzapfel, C.; Mücklich, F.; Degischer, H. P.: Three-dimensional characterization of ‘as-cast’ and solution-treated AlSi12(Sr) alloys by high-resolution FIB tomography. Acta Mater. 55 (2007) 11, pp. 3875–3882. 10.1016/j.actamat.2007.03.004Suche in Google Scholar

[16] Holzapfel, C.; Soldera, F.; Faundez, E. A.; Mücklich, F.: Site-specific structural investigations of oxidized nickel samples modified by plasma erosion processes. J. Microsc. 227 (2007) 1, pp. 42–50. 10.1111/j.1365-2818.2007.01781.xSuche in Google Scholar PubMed

[17] West, G. D.; Thomson, R. C.: Combined EBSD / EDS tomography in a dual-beam FIB / FEG – SEM. J. Microsc. 233 (2009) 3, pp. 442–450. 10.1111/j.1365-2818.2009.03138.xSuche in Google Scholar PubMed

[18] Guyon, J.; Gey, N.; Goran, D.; Chalal, S.; Pérez-Willard, F.: Advancing FIB assisted 3D EBSD using a static sample setup. Ultramicroscopy 161 (2016), pp. 161–167. 10.1016/j.ultramic.2015.11.011Suche in Google Scholar PubMed

[19] Smith, N. S. et al.: High brightness inductively coupled plasma source for high current focused ion beam applications. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 24 (2006) 6, pp. 2902–2906. 10.1116/1.2366617Suche in Google Scholar

[20] Echlin, M. P.; Mottura, A.; Torbet, C. J.; Pollock, T. M.: A new TriBeam system for three-dimensional multimodal materials analysis. Rev. Sci. Instrum. 83 (2012) 2. 10.1063/1.3680111Suche in Google Scholar PubMed

[21] Echlin, M. P. et al.: Three-dimensional characterization of the permeability of W-Cu composites using a new ‘triBeam’ technique. Acta Mater. 64 (2014), pp. 307–315. 10.1016/j.actamat.2013.10.043Suche in Google Scholar

[22] Liu, Z.; Chen-Wiegart, Y. C. K.; Wang, J.; Barnett, S. A.; Faber, K. T.: Three-Phase 3D Reconstruction of a LiCoO2 Cathode via FIB-SEM Tomography. Microsc. Microanal. 22 (2016) 1, pp. 140–148. 10.1017/S1431927615015640Suche in Google Scholar PubMed

[23] Cazic, I. et al.: Nucleation burst in additively manufactured Inconel 718: 3D characterization of ISRO-induced equiaxed microstructure. Addit. Manuf. 66 (2023) February, p. 103458. 10.1016/j.addma.2023.103458Suche in Google Scholar

[24] Smith, N. S. et al.: High brightness inductively coupled plasma source for high current focused ion beam applications. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 24 (2006) 6, pp. 2902–2906.10.1116/1.2366617Suche in Google Scholar

Received: 2024-09-02
Accepted: 2024-09-13
Published Online: 2024-10-21
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/pm-2024-0076/html
Button zum nach oben scrollen