Startseite A broad overview on innovative functionalized paper solutions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A broad overview on innovative functionalized paper solutions

  • Roberto Aguado EMAIL logo , Dina Murtinho und Artur J. M. Valente
Veröffentlicht/Copyright: 30. Oktober 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Functionalized paper solutions have attracted the attention of many research groups in the 21st century, given the low cost, availability, flexibility and biodegradability of paper. Despite this material has been manufactured for more than two thousand years, its traditional uses hardly go beyond writing, printing, cleaning and packaging. This overview covers fascinating advances in the functionalization of paper that have taken place this century. This century, test strips for glucose and pH have evolved towards microfluidic paper analytical devices that allow for accurate quantitative determinations. In another context, paper electronics started with the first paper-based transistors and followed with more sophisticated electronic devices. Also, cheap paper-based membranes and adsorbents have been proposed for water treatment, and researchers have found innovative ways to confer antimicrobial and anti-counterfeiting properties to paper. Furthermore, numberless ways to functionalize paper are reported here. Fibers can be modified by chemical reactions, nanofibrillation or supramolecular interactions with certain reagents. The surface can be coated by diverse methods, including size press coating, sputtering, e-beam evaporation and the sol-gel process. Special inks can be printed onto paper to make hydrophobic, conductive or luminescent patterns. Brief opinions about future outlooks are given at the end.

Award Identifier / Grant number: 246/AXIS II/2017

Award Identifier / Grant number: UID/QUI/00313/2019

Funding statement: This work was carried out under the Project Inpactus – innovative products and technologies from eucalyptus, Project N.º 21874 funded by Portugal 2020 through European Regional Development Fund (ERDF) in the frame of COMPETE 2020 nº246/AXIS II/2017. Authors would also like thank the Coimbra Chemical Centre, which is supported by theFundação para a Ciência e a Tecnologia (FCT), through the projects UID/QUI/00313/2019 and COMPETE. R.A. acknowledges the post-doc grant BPD 02 | POCI-01-0247-FEDER-021874.

  1. Conflict of interest: The authors declare no conflicts of interest.

References

Abe, K., Suzuki, K., Citterio, D. (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal. Chem. 80:6928–6934.10.1021/ac800604vSuche in Google Scholar PubMed

Abitbol, T., Marway, H.S., Kedzior, S.A., Yang, X., Franey, A., Gray, D.G., Cranston, E.D. (2017) Hybrid fluorescent nanoparticles from quantum dots coupled to cellulose nanocrystals. Cellulose 24:1287–1293.10.1007/s10570-016-1188-3Suche in Google Scholar

Almeida, M.I., Jayawardane, B.M., Kolev, S.D., McKelvie, I.D. (2018) Developments of microfluidic paper-based analytical devices (µPADs) for water analysis: A review. Talanta 177:176–190.10.1016/j.talanta.2017.08.072Suche in Google Scholar

Anany, H., Chen, W., Pelton, R., Griffiths, M.W. (2011) Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl. Environ. Microbiol. 77:6379–6387.10.1128/AEM.05493-11Suche in Google Scholar PubMed

Andersson, P., Nilsson, D., Svensson, P.O., Chen, M., Malmström, A., Remonen, T., Kugler, T., Berggren, M. (2002) Active Matrix Displays Based on All-Organic Electrochemical Smart Pixels Printed on Paper. Adv. Mater. 14:1460–1464.10.1002/1521-4095(20021016)14:20<1460::AID-ADMA1460>3.0.CO;2-SSuche in Google Scholar

Andres, J., Hersch, R.D., Moser, J.E., Chauvin, A.S. (2014) A New Anti-Counterfeiting Feature Relying on Invisible Luminescent Full Color Images Printed with Lanthanide-Based Inks. Adv. Funct. Mater. 24:5029–5036.10.1002/adfm.201400298Suche in Google Scholar

Armgarth, M., Kugler, T., Berggren, M., Remonen, T. (2002) Electrochromic device. WIPO patent No. WO2002071140A1, assigned to Acreo AB, 2002-09-12.Suche in Google Scholar

Baptista, A.C., Ropio, I., Romba, B., Nobre, J.P., Henriques, C., Silva, J.C., Martins, J.I., Borges, J.P., Ferreira, I. (2018) Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. J. Mater. Chem. A 6:256–265.10.1039/C7TA06457HSuche in Google Scholar

Barbiroli, A., Bonomi, F., Capretti, G., Iametti, S., Manzoni, M., Piergiovanni, L., Rollini, M. (2012) Antimicrobial activity of lysozyme and lactoferrin incorporated in cellulose-based food packaging. Food Control 26:387–392.10.1016/j.foodcont.2012.01.046Suche in Google Scholar

Barsbay, M., Kavaki, P.A., Tilki, S., Kavaki, C., Güven, O. (2018) Porous cellulosic adsorbent for the removal of Cd (II), Pb(II) and Cu(II) ions from aqueous media. Radiat. Phys. Chem. 142:70–76.10.1016/j.radphyschem.2017.03.037Suche in Google Scholar

Bayley, H. The Lost Language of Symbolism. The Book Three, Escondido, CA, USA, 2000.Suche in Google Scholar

Ben Arfa, A., Preziosi-Belloy, L., Chalier, P., Gontard, N. (2007) Antimicrobial Paper Based on a Soy Protein Isolate or Modified Starch Coating Including Carvacrol and Cinnamaldehyde. J. Agric. Food Chem. 55:2155–2162.10.1021/jf0626009Suche in Google Scholar PubMed

Berggren, M., Kugler, T., Remonen, T., Nilsson, D., Chen, M., Norberg, P. (2001) Paper electronics and electronic paper. In: Proceedings of the First International IEEE Conference on Polymers and Adhesives in Microelectronics and Photonics, 21–24 Oct., Postdam, pp. 300–303.10.1109/POLYTR.2001.973298Suche in Google Scholar

Berggren, M., Nilsson, D., Robinson, N.D. (2007) Organic materials for printed electronics. Nat. Mater. 6:3–5.10.1038/nmat1817Suche in Google Scholar PubMed

Berry, S.B., Fernandes, S.C., Rajaratnam, A., DeChiara, N.S., Mace, C.R. (2016) Measurement of the hematocrit using paper-based microfluidic devices. Lab Chip 16:3689–3694.10.1039/C6LC00895JSuche in Google Scholar PubMed

Berthier, S., Boulenguez, J., Bálint, Z. (2007) Multiscaled polarization effects in Suneve coronata (Lepidoptera) and other insects: application to anti-counterfeiting of banknotes. Appl. Phys. A 86:123–130.10.1007/s00339-006-3723-9Suche in Google Scholar

Blackburn, P., De la Harpe, J. (1996) Moist bacteriocin disinfectant wipes and methods of using the same. WIPO patent No. WO1996039842A1, assigned to Ambi, Inc., 1996-12-19.Suche in Google Scholar

Bjorklund, R.B., Lundström, I. (1984) Some properties of polypyrrole-paper composites. J. Electron. Mater. 13:211–230.10.1007/BF02659844Suche in Google Scholar

Brobbey, K.J., Haapanen, J., Gunell, M., Mäkelä, J.M., Eerola, E., Toivakka, M., Saarinen, J.J. (2017) One-step flame synthesis of silver nanoparticles for roll-to-roll production of antibacterial paper. Appl. Surf. Sci. 420:558–565.10.1016/j.apsusc.2017.05.143Suche in Google Scholar

Brouillette, F., Chabot, B., Morneau, D., Daneault, C. (2004) Effect of physico-chemical conditions on the properties of zeolite microparticles used in pulp and paper applications. Microporous Mesoporous Mater. 70:51–56.10.1016/j.micromeso.2004.03.001Suche in Google Scholar

Bruzewicz, D.A., Reches, M., Whitesides, G.M. (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal. Chem. 80:3387–3392.10.1021/ac702605aSuche in Google Scholar PubMed PubMed Central

Cai, L., Xu, C., Lin, S., Luo, J., Wu, M., Yang, F. (2014) A simple paper-based sensor fabricated by selective wet etching of silanized filter paper using a paper mask. Biomicrofluidics 8(5):056504.10.1063/1.4898096Suche in Google Scholar PubMed PubMed Central

Carrilho, E., Martinez, A.W., Whitesides, G.M. (2009) Understanding Wax Printing: A simple micropatterning process for paper-based microfluidics. Anal. Chem. 81:7091–7095.10.1021/ac901071pSuche in Google Scholar PubMed

Cecchini, J., Serra, R., César, M.B., Ulla, M., Galván, M., Milt, V. (2011) Ceramic papers containing Y zeolite for toluene removal. Microporous Mesoporous Mater. 145:51–58.10.1016/j.micromeso.2011.04.024Suche in Google Scholar

Chen, Q., Chen, F., Yan, Y. (2013) Fluorescent Semiconductor Nanocrystals, A Promising Fluorescent Anti-Counterfeiting Material for Specialty Paper. BioResources 8(1):6–7.10.15376/biores.8.1.6-7Suche in Google Scholar

Chen, W., Fang, X., Li, H., Cao, H., Kong, J. (2016) A simple paper-based colorimetric device for rapid mercury(II) assay. Sci. Rep. 6:31948.10.1038/srep31948Suche in Google Scholar PubMed PubMed Central

Chen, C., Petterson, T., Illergård, J., Ek, M., Wågberg, L. (2019) Influence of cellulose charge on bacteria adhesion and viability to PVAm/CNF/PVAm-modified cellulose model surfaces. Biomacromolecules 20(5):2075–2083.10.1021/acs.biomac.9b00297Suche in Google Scholar PubMed

Cheng, Y., Zhang, X., Fang, C., Chen, J., Wang, Z. (2018) Discoloration mechanism, structures and recent applications of thermochromic materials via different methods: A review. J. Mater. Sci. Technol. 34:2225–2234.10.1016/j.jmst.2018.05.016Suche in Google Scholar

Chow, D.C.K., Schoenbaum, T. International Trade Law: Problems, Cases, and Materials. Wolters. Kluwer, New York, 2017.Suche in Google Scholar

Cova, T., Murtinho, D., Pais, A.A.C.C., Valente, A.J.M. (2018) Combining cellulose and cyclodextrins: fascinating designs for materials and pharmaceutics. Front. Chem. 6:271.10.3389/fchem.2018.00271Suche in Google Scholar PubMed PubMed Central

d’Halluin, M., Rull-Barrull, J., Bretel, G., Labrugère, C., Le Grognec, E., Felpin, F.X. (2017) Chemically modified cellulose filter paper for heavy metal remediation in water. ACS Sust. Chem. Eng. 5:1965–1973.10.1021/acssuschemeng.6b02768Suche in Google Scholar

Dakal, T.C., Kumar, A., Majumdar, R.S., Yadav, V. (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 7:1831.10.3389/fmicb.2016.01831Suche in Google Scholar PubMed PubMed Central

Damon, D.E., Maher, Y.S., Yin, M., Jjunju, F.P.M., Young, I.S., Taylor, S., Maher, S., Badu-Tawiah, A. (2016) 2D wax-printed paper substrates with extended solvent supply capabilities allow enhanced ion signal in paper spray ionization. Analyst 141:3866–3873.10.1039/C6AN00168HSuche in Google Scholar PubMed

de Bergamasco, R.C., Zanin, G.M., de Moraes, F.F. (2007) Grafting of cyclodextrins onto filter paper. J. Incl. Phenom. Macrocycl. Chem. 57:75–78.10.1007/s10847-006-9217-8Suche in Google Scholar

de Oliveira, R.A.G., Camargo, F., Pesquero, N.C., Faria, R.C. (2017) A simple method to produce 2D and 3D microfluidic paper-based analytical devices for clinical analysis. Anal. Chim. Acta 957:40–46.10.1016/j.aca.2017.01.002Suche in Google Scholar PubMed

Devadhasan, J.P., Kim, J. (2018) A chemically functionalized paper-based microfluidic platform for multiplex heavy metal detection. Sens. Actuators B, Chem. 273:18–24.10.1016/j.snb.2018.06.005Suche in Google Scholar

Dong, C., Ye, Y., Qian, L., Zhao, G., He, B., Xiao, H. (2014) Antibacterial modification of cellulose fibers by grafting β-cyclodextrin and inclusion with ciprofloxacin. Cellulose 21:1921–1932.10.1007/s10570-014-0249-8Suche in Google Scholar

Edberg, J., Inganäs, O., Engquist, I., Berggren, M. (2018) Boosting the capacity of all-organic paper supercapacitors using wood derivatives. J. Mater. Chem. A 6:145–152.10.1039/C7TA06810GSuche in Google Scholar

Esquivel, J.P., Del Campo, F.J., Gómez de la Fuente, J.L., Rojas, S., Sabaté, N. (2014) Microfluidic fuel cells on paper: meeting the power needs of next generation lateral flow devices. Energy Environ. Sci. 7:1744–1749.10.1039/C3EE44044CSuche in Google Scholar

Fang, X., Zhao, Q., Cao, H., Liu, J., Guan, M., Kong, J. (2015) Rapid detection of Cu(2+) by a paper-based microfluidic device coated with bovine serum albumin (BSA)-Au nanoclusters. Analyst 140:7823–7826.10.1039/C5AN01016KSuche in Google Scholar PubMed

Fenton, E.M., Mascarenas, M.R., López, G.P., Sibbett, S.S. (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl. Mater. Interfaces. 1:124–129.10.1021/am800043zSuche in Google Scholar PubMed

Fortunato, E., Correia, N., Barquinha, P., Pereira, L., Goncalves, G., Martins, R. (2008) High-Performance Flexible Hybrid Field-Effect Transistors Based on Cellulose Fiber Paper. IEEE Electron Device Lett. 29:988–990.10.1109/LED.2008.2001549Suche in Google Scholar

Fridley, G.E., Le, H., Yager, P. (2014) Highly Sensitive Immunoassay Based on Controlled Rehydration of Patterned Reagents in a 2-Dimensional Paper Network. Anal. Chem. 86:6447–6453.10.1021/ac500872jSuche in Google Scholar PubMed PubMed Central

Fu, E., Liang, T., Houghtaling, J., Ramachandran, S., Ramsey, S.A., Lutz, B., Yager, P. (2011a) Enhanced Sensitivity of Lateral Flow Tests Using a Two-Dimensional Paper Network Format. Anal. Chem. 83:7941–7946.10.1021/ac201950gSuche in Google Scholar PubMed PubMed Central

Fu, E., Ramsey, S.A., Kauffman, P., Lutz, B., Yager, P. (2011b) Transport in two-dimensional paper networks. Microfluid. Nanofluid. 10:29–35.10.1007/s10404-010-0643-ySuche in Google Scholar PubMed PubMed Central

Gao, K., Shao, Z., Wu, X., Wang, X., Li, J., Zhang, Y., Wang, W., Wang, F. (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr. Polym. 97:243–251.10.1016/j.carbpol.2013.03.067Suche in Google Scholar PubMed

Gastaldi, E., Chalier, P., Guillemin, A., Gontard, N. (2007) Microstructure of protein-coated paper as affected by physico-chemical properties of coating solutions. Colloids Surf. A 301:301–310.10.1016/j.colsurfa.2006.12.079Suche in Google Scholar

Ge, L., Yan, J., Song, X., Yan, M., Ge, S., Yu, J. (2012) Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing. Biomaterials 33:1024–1031.10.1016/j.biomaterials.2011.10.065Suche in Google Scholar PubMed

Grau, G. (2017) Low-cost fabrication of paper-based systems: Microfluidics, sensors, electronics and deployment. In: Proceedings of the 60th IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 6–9 Aug., Boston. pp. 84–87.10.1109/MWSCAS.2017.8052866Suche in Google Scholar

Grigoray, O., Wondraczek, H., Pfeifer, A., Fardim, P., Heinze, T. (2017) Fluorescent multifunctional polysaccharides for sustainable supramolecular functionalization of fibers in water. ACS Sust. Chem. Eng. 5:1794–1803.10.1021/acssuschemeng.6b02539Suche in Google Scholar

Guo, S., Li, J., Xiang, H., Mo, L., Xu, J. (2017) Dual-functional terbium complex enhancing antibacterial and anti-counterfeiting properties of coated paper. J. Biobased Mater. Bioenergy 11(6):584–589.10.1166/jbmb.2017.1730Suche in Google Scholar

He, X., Zi, Y., Yu, H., Zhang, S.L., Wang, J., Ding, W., Zou, H., Zhang, W., Lu, C., Wang, Z.L. (2017) An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction. Nano Energy 39:328–336.10.1016/j.nanoen.2017.06.046Suche in Google Scholar

Heyse, P., De Vilder, I., Vanneste, M. (2016) Smart durable and self-healing textile coatings. In: Active Coatings for Smart Textiles. Ed. Hu, J. Woodhead Publishing, UK. pp. 55–80.10.1016/B978-0-08-100263-6.00004-6Suche in Google Scholar

Ho, C.M.B., Ng, S.H., Li, K.H.H., Yoon, Y.-J. (2015) 3D printed microfluidics for biological applications. Lab Chip 15:3627–3637.10.1039/C5LC00685FSuche in Google Scholar PubMed

Hongyang, N., Talo, A., Zhang, X. (2010) Thin battery with longer life time. European patent No. EP2039652B1, assigned to Enfucell Oy, 2010-06-16.Suche in Google Scholar

Hossain, S.M.Z., Luckham, R.E., McFadden, M.J., Brennan, J.D. (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal. Chem. 81:9055–9064.10.1021/ac901714hSuche in Google Scholar PubMed

Hossain, S.M.Z., Ozimok, C., Sicard, C., Aguirre, S.D., Ali, M.M., Li, Y., Brennan, J.D. (2012) Multiplexed paper test strip for quantitative bacterial detection. Anal. Bioanal. Chem. 403:1567–1576.10.1007/s00216-012-5975-xSuche in Google Scholar PubMed

Hu, L., Wu, H., La Mantia, F., Yang, Y., Cui, Y. (2010) Thin, flexible secondary Li-ion paper batteries. ACS Nano 4:5843–5848.10.1021/nn1018158Suche in Google Scholar PubMed

Hu, L., Zheng, G., Yao, J., Liu, N., Weil, B., Eskilsson, M., Karabulut, E., Ruan, Z., Fan, S., Bloking, J.T., McGehee, M.D., Wagberg, L., Cui, Y. (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ. Sci. 6:513–518.10.1039/C2EE23635DSuche in Google Scholar

Hu, J., Zhang, Z.-L., Wen, C.-Y., Tang, M., Wu, L.-L., Liu, C., Zhu, L., Pang, D.-W. (2016) Sensitive and quantitative detection of C-Reaction protein based on immunofluorescent nanospheres coupled with lateral flow test strip. Anal. Chem. 88:6577–6584.10.1021/acs.analchem.6b01427Suche in Google Scholar PubMed

Huang, B., Kang, G.J., Ni, Y. (2006) Preparation of conductive paper by in-situ polymerization of pyrrole in a pulp fibre system. Pulp Pap. Can. 107(2):T38–T42.Suche in Google Scholar

Huang, J., Zhu, H., Chen, Y., Preston, C., Rohrbach, K., Cumings, J., Hu, L. (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113.10.1021/nn304407rSuche in Google Scholar PubMed

Huang, L., Rao, W., Fan, L., Xu, J., Bai, Z., Xu, W., Bao, H. (2018) Paper electrodes coated with partially-exfoliated graphite and polypyrrole for high-performance flexible supercapacitors. Polymers 10(2):135.10.3390/polym10020135Suche in Google Scholar PubMed PubMed Central

Hunter, D. Papermaking: The History and Technique of an Ancient Craft. Dover Publications, New York, 1978.Suche in Google Scholar

Jahanshahi-Anbuhi, S., Chavan, P., Sicard, C., Leung, V., Hossain, S.M.Z., Pelton, R., Brennan, J.D., Filipe, C.D.M. (2012) Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip 12:5079–5085.10.1039/c2lc41005bSuche in Google Scholar PubMed

Jahanshahi-Anbuhi, S., Henry, A., Leung, V., Sicard, C., Pennings, K., Pelton, R., Brennan, J.D., Filipe, C.D. (2014) Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab Chip 14:229–236.10.1039/C3LC50762ASuche in Google Scholar PubMed

Jaisai, M., Baruah, S., Dutta, J. (2012) Paper modified with ZnO nanorods – antimicrobial studies. Beilstein J. Nanotechnol. 3:684–691.10.3762/bjnano.3.78Suche in Google Scholar PubMed PubMed Central

Jiang, Q., Liu, C., Xu, J., Lu, B., Song, H., Shi, H., Yao, Y., Zhang, L. (2014) Paper: An effective substrate for the enhancement of thermoelectric properties in PEDOT:PSS. J. Polym. Sci. B 52:737–742.10.1002/polb.23482Suche in Google Scholar

Kang, Y.J., Kim, U. (2012) All-solid-state flexible supercapacitor based on papers coated with carbon nanotubes and ionic-liquid-based gel electrolyte and method of preparation the same. Korean patent No. KR101201942B1, assigned to the Korea University, 2012-11-16.Suche in Google Scholar

Kar, S., Dash, M., Maiti, T.K., Chakraborty, S. (2015) Effect of hematocrit on blood dynamics on a compact disc platform. Analyst 140:1432–1437.10.1039/C4AN02020KSuche in Google Scholar PubMed

Katis, I.N., He, P.J.W., Eason, R.W., Sones, C.L. (2018) Improved sensitivity and limit-of-detection of lateral flow devices using spatial constrictions of the flow-path. Biosens. Bioelectron. 113:95–100.10.1016/j.bios.2018.05.001Suche in Google Scholar PubMed

Kawashima, H., Shinotsuka, M., Nakano, M., Goto, H. (2012) Fabrication of conductive paper coated with PEDOT: preparation and characterization. J. Coat. Technol. Res. 9(4):467–474.10.1007/s11998-011-9375-5Suche in Google Scholar

Kersaudy-Kerhoas, M., Sollier, E. (2013) Micro-scale blood plasma separation: from acoustophoresis to egg-beaters. Lab Chip 13:3323–3346.10.1039/c3lc50432hSuche in Google Scholar PubMed

Khoshnood, M., Azizian, S. (2012) Adsorption of 2,4-dichlorophenoxyacetic acid pesticide by graphitic carbon nanostructures prepared from biomasses. J. Ind. Eng. Chem. 18:1796–1800.10.1016/j.jiec.2012.04.007Suche in Google Scholar

Kim, Y.-H., Moon, D.-G., Han, J.-I. (2004) Organic TFT array on a paper substrate. IEEE Electron Device Lett. 25:702–704.10.1109/LED.2004.836502Suche in Google Scholar

Kim, S., Yun, T.G., Kang, C., Son, M.-J., Kang, J.-G., Kim, I.-H., Lee, H.-J., An, C.-H., Hwang, B. (2018) Facile fabrication of paper-based silver nanostructure electrodes for flexible printed energy storage system. Mater. Des. 151:1–7.10.1016/j.matdes.2018.04.047Suche in Google Scholar

Ko, S., Fleming, P., Joyce, M., Ari-Gur, P. (2009) High performance nano-titania photocatalytic paper composite. Part II: Preparation and characterization of natural zeolite-based nano-titania composite sheets and study of their photocatalytic activity. Mat. Sci. Eng. B 164(3):135–139.10.1016/j.mseb.2009.08.010Suche in Google Scholar

Kohanski, M.A., Dwyer, D.J., Collins, J.J. (2010) How antibiotics kill bacteria: from targets to networks. Nat. Rev. Microbiol. 8:423–435.10.1038/nrmicro2333Suche in Google Scholar PubMed PubMed Central

Koivula, H., Pelton, R., Brennan, J.D., Grenon, J., Manfred, T. (2013) Flexographic printability of sol-gel precursor dispersions for bioactive paper. Nord. Pulp Pap. Res. J. 28(3):450–457.10.3183/npprj-2013-28-03-p450-457Suche in Google Scholar

Korivi, N.S., Vangari, M., Jiang, L. (2017) Carbon nanotube nanocomposite-modified paper electrodes for supercapacitor applications. Appl. Nanosci. 7:41–45.10.1007/s13204-016-0545-8Suche in Google Scholar

Lai, K.-R., Wang, W., Wang, L.-P. (2011) Preparation of mercury ions absorbent from filter paper by surface sol-gel process and functionalized monolayers treatment. In: Proceedings 2011 International Symposium on Water Resource and Environmental Protection, 20–22 May, Xi’an. pp. 3193–3195.Suche in Google Scholar

Lappalainen, T., Vento, T., Teerinen, T., Erho, T., Hakalahti, L. (2010) Cellulose as a novel substrate for lateral flow assay. Nord. Pulp Pap. Res. J. 25(4):529–543.10.3183/npprj-2010-25-04-p529-543Suche in Google Scholar

Li, X., Tian, J., Nguyen, T., Shen, W. (2008) Paper-based microfluidic devices by plasma treatment. Anal. Chem. 80:9131–9134.10.1021/ac801729tSuche in Google Scholar PubMed

Li, J., Qian, X., Chen, J., Ding, C., An, X. (2010) Conductivity decay of cellulose–polypyrrole conductive paper composite prepared by in situ polymerization method. Carbohydr. Polym. 82:504–509.10.1016/j.carbpol.2010.05.036Suche in Google Scholar

Li, X., Wang, Y.-H., Zhao, C., Liu, X. (2014a) Paper-based piezoelectric touch pads with hydrothermally grown zinc oxide nanowires. ACS Appl. Mater. Interfaces. 6:22004–22012.10.1021/am504903bSuche in Google Scholar PubMed

Li, H., Han, D., Pauletti, G.M., Steckl, A.J. (2014b) Blood coagulation screening using a paper-based microfluidic lateral flow device. Lab Chip 14:4035–4041.10.1039/C4LC00716FSuche in Google Scholar PubMed

Li, S. (2017) Double-folding paper-based generator for mechanical energy harvesting. Front. Optoelectron. 10:38–43.10.1007/s12200-016-0658-4Suche in Google Scholar

Li, Y., Zhang, Y., Wanru, D., Yue, J., Xu, M., Shi, S.Q. (2018a) Preparation and properties of pulp fibers treated with zinc oxide nanoparticles by in situ chemosynthesis. Holzforschung 72(11):923–931.10.1515/hf-2018-0013Suche in Google Scholar

Li, H., Cui, R., Peng, L., Cai, S., Li, P., Lan, T. (2018b) Preparation of antibacterial cellulose paper using layer-by-layer assembly for cooked beef preservation at ambient temperature. Polymers 10(1):15.10.3390/polym10010015Suche in Google Scholar PubMed PubMed Central

Li, H., Han, D., Pauletti, G., Hegener, M.A., Steckl, A.J. (2018c) Correcting the effect of hematocrit in whole blood coagulation analysis on paper-based lateral flow device. Anal. Methods 10:2869–2874.10.1039/C8AY00192HSuche in Google Scholar

Liana, D.D., Raguse, B., Gooding, J.J., Chow, E. (2012) Recent advances in paper-based sensors. Sensors 11(9):11505–11526.10.3390/s120911505Suche in Google Scholar PubMed PubMed Central

Liao, Q., Zhang, Z., Zhang, X., Mohr, M., Zhang, Y., Fecht, H.-J. (2014) Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 7:917–928.10.1007/s12274-014-0453-8Suche in Google Scholar

Lin, Y., Gritsenko, D., Liu, Q., Lu, X., Xu, J. (2016) Recent advancements in functionalized paper-based electronics. ACS Appl. Mater. Interfaces 8:20501–20515.10.1021/acsami.6b04854Suche in Google Scholar PubMed

Littunen, K., de Snoei, C., Samoylenko, A., Xu, Q., Quaggin, S., Vainio, S., Seppälä, J. (2016) Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties. Eur. Polym. J. 75:116–124.10.1016/j.eurpolymj.2015.12.008Suche in Google Scholar

Liu, Z., Yu, J., Lin, W., Yang, W., Li, R., Chen, H., Zhang, X. (2018) Facile method for the hydrophobic modification of filter paper for applications in water-oil separation. Surf. Coat. Technol. 352:313–319.10.1016/j.surfcoat.2018.08.026Suche in Google Scholar

López-Marzo, A.M., Merkoçi, A. (2016) Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab Chip 16:3150–3176.10.1039/C6LC00737FSuche in Google Scholar PubMed

Lu, H., Hagberg, J., Lindbergh, G., Cornell, A. (2018) Flexible and lightweight lithium-ion batteries based on cellulose nanofibrils and carbon fibers. Batteries 4(2):17.10.3390/batteries4020017Suche in Google Scholar

Lu, Y., Shi, W., Jiang, L., Qin, J., Lin, B. (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500.10.1002/elps.200800563Suche in Google Scholar PubMed

Lutz, B.R., Trinh, P., Ball, C., Fu, E., Yager, P. (2011) Two-dimensional paper networks: programmable fluidic disconnects for multi-step processes in shaped paper. Lab Chip 11:4274–4278.10.1039/c1lc20758jSuche in Google Scholar PubMed PubMed Central

Martinez, A.W., Phillips, S.T., Butte, M.J., Whitesides, G.M. (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46:1318–1320.10.1002/anie.200603817Suche in Google Scholar PubMed PubMed Central

Martinez, A.W., Phillips, S.T., Whitesides, G.M. (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc. Natl. Acad. Sci. USA 105:19606–19611.10.1073/pnas.0810903105Suche in Google Scholar PubMed PubMed Central

Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E. (2010) Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices. Anal. Chem. 82:3–10.10.1021/ac9013989Suche in Google Scholar PubMed

Martins, R., Gaspar, D., Mendes, M.J., Pereira, L., Martins, J., Bahubalindruni, P., Barquinha, P., Fortunato, E. (2018) Papertronics: Multigate paper transistor for multifunction applications. Appl. Mater. Today 12:402–414.10.1016/j.apmt.2018.07.002Suche in Google Scholar

Mautner, A., Lee, K.-Y., Lahtinen, P., Hakalahti, M., Tammelin, T., Li, K., Bismarck, A. (2014) Nanopapers for organic solvent nanofiltration. Chem. Commun. 50:5778–5781.10.1039/C4CC00467ASuche in Google Scholar

Mautner, A., Maples, H.A., Sehaqui, H., Zimmermann, T., de Perez, L., Mathew, A.P., Lai, C.Y., Li, K., Bismarck, A. (2016) Nitrate removal from water using a nanopaper ion-exchanger. Environ. Sci. Water Res. Technol. 2:117–124.10.1039/C5EW00139KSuche in Google Scholar

Mielczarek, W.S., Obaje, E.A., Bachmann, T.T., Kersaudy-Kerhoas, M. (2016) Microfluidic blood plasma separation for medical diagnostics: is it worth it? Lab Chip 16:3441–3448.10.1039/C6LC00833JSuche in Google Scholar PubMed

Mihaly Cozmuta, A., Apjok, R., Peter, A., Mihaly Cozmuta, L., Nicula, C., Baia, M., Vulpoi, A. (2018) Active papers coated with chitosan and containing TiO2 and Ag/TiO2 nanoparticles for increasing the shelf-life of walnut kernels. Cellulose 25:5205–5225.10.1007/s10570-018-1925-xSuche in Google Scholar

Miller, R.J., Grade, M., Simmons, T.J., Kovacs, F., Brooks, A., Allen, G. (2015) Compliant energy storing structural sheet. US patent No. US9293264B2, assigned to The Paper Battery Company, Inc., 2015-07-02.Suche in Google Scholar

Miura, H., Tsuchikawa, K., Murakami, T., Akahori, S. (2007) Method for producing anti-counterfeit sheet. Japanese patent No. JP3906777B2, assigned to Tokushu Tokai, 2007-04-18.Suche in Google Scholar

Moral, A., Aguado, R., Jarabo, R., Tijero, A. (2017) Cationized fibers from pine kraft pulp: advantages of refining before functionalization. Holzforschung 71(11):843–851.10.1515/hf-2017-0023Suche in Google Scholar

Musyoka, S.M., Ngila, J.C., Moodley, B., Petrik, L., Kindness, A. (2011) Synthesis, Characterization, and adsorption kinetic studies of ethylenediamine modified cellulose for removal of Cd and Pb. Anal. Lett. 44:1925–1936.10.1080/00032719.2010.539736Suche in Google Scholar

Nargang, T.M., Runck, M., Helmer, D., Rapp, B.E. (2016) Functionalization of paper using photobleaching: A fast and convenient method for creating paper-based assays with colorimetric and fluorescent readout. Eng. Life Sci. 16:525–531.10.1002/elsc.201500183Suche in Google Scholar

Nechita, P. (2017) Active-antimicrobial coatings based on silver nanoparticles and natural polymers for paper packaging functionalization. Nord. Pulp Pap. Res. J. 32(3):452–458.10.3183/npprj-2017-32-03-p452-458Suche in Google Scholar

Ngo, Y.H., Li, D., Simon, G.P., Garnier, G. (2011) Paper surfaces functionalized by nanoparticles. Adv. Colloid Interface Sci. 163:23–38.10.1016/j.cis.2011.01.004Suche in Google Scholar PubMed

Nilghaz, A., Guan, L., Tan, W., Shen, W. (2016) Advances of paper-based microfluidics for diagnostics—The original motivation and current status. ACS Sensors 1:1382–1393.10.1021/acssensors.6b00578Suche in Google Scholar

Nilghaz, A., Shen, W. (2015) Low-cost blood plasma separation method using salt functionalized paper. RSC Adv. 5:53172–53179.10.1039/C5RA01468ASuche in Google Scholar

Nilsson, D., Chen, M., Kugler, T., Remonen, T., Armgarth, M., Berggren, M. (2002a) Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14:51–54.10.1002/1521-4095(20020104)14:1<51::AID-ADMA51>3.0.CO;2-#Suche in Google Scholar

Nilsson, D., Kugler, T., Svensson, P.-O., Berggren, M. (2002b) An all-organic sensor–transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sens. Actuators B, Chem. 86:193–197.10.1016/S0925-4005(02)00170-3Suche in Google Scholar

Nongbe, M.C., Bretel, G., Ekou, T., Ekou, L., Yao, B.K., Le Grognec, E., Felpin, F.X. (2018). Cellulose paper grafted with polyamines as powerful adsorbent for heavy metals. Cellulose 25:4043–4055.10.1007/s10570-018-1833-0Suche in Google Scholar

O’Farrell, B. Evolution in Lateral Flow–Based Immunoassay Systems, Lateral Flow Immunoassay. Humana Press, New York, 2009.10.1007/978-1-59745-240-3_1Suche in Google Scholar

Parolo, C., Medina-Sánchez, M., De la Escosura, A., Merkoçi, A. (2013) Simple paper architecture modifications lead to enhanced sensitivity in nanoparticle based lateral flow immunoassays. Lab Chip 13:386–390.10.1039/C2LC41144JSuche in Google Scholar PubMed

Peeling, R.W., Holmes, K.K., Mabey, D., Ronald, A. (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sex. Transm. Infect. 82(Suppl. V):1–6.10.1136/sti.2006.024265Suche in Google Scholar

Pelton, R. (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal. Chem. 28(8):925–942.10.1016/j.trac.2009.05.005Suche in Google Scholar PubMed PubMed Central

Pereira, L., Gaspar, D., Guerin, D., Delattre, A., Fortunato, E., Martins, R. (2014) The influence of fibril composition and dimension on the performance of paper gated oxide transistors. Nanotechnology 25(9):094007.10.1088/0957-4484/25/9/094007Suche in Google Scholar PubMed

Pushparaj, V.L., Shaijumon, M.M., Kumar, A., Murugesan, S., Ci, L., Vajtai, R., Linhardt, R.J., Nalamusa, O., Ajayan, P.M. (2007) Flexible energy storage devices based on nanocomposite paper. Proc. Natl. Acad. Sci. USA 104(34):13574–13577.10.1073/pnas.0706508104Suche in Google Scholar PubMed PubMed Central

Qian, L., Guan, Y., Ziaee, Z., He, B., Zheng, A., Xiao, H. (2009) Rendering cellulose fibers antimicrobial using cationic β-cyclodextrin-based polymers included with antibiotics. Cellulose 16:309–317.10.1007/s10570-008-9270-0Suche in Google Scholar

Raghavendra, G.M., Jayaramudu, T., Varaprasad, K., Sadiku, R., Ray, S.S., Mohana Raju, K. (2013) Cellulose-polymer-Ag nanocomposite fibers for antibacterial fabrics/skin scaffolds. Carbohydr. Polym. 93:553–560.10.1016/j.carbpol.2012.12.035Suche in Google Scholar PubMed PubMed Central

Risch, R., Meller, H., Pernicka, E. Metalle der Macht: Frühes Gold und Silber. Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt, Halle (Saale), 2014.Suche in Google Scholar

Ropio, I., Baptista, A.C., Nobre, J.P., Correia, J., Belo, F., Taborda, S., Morais Faustino, B.M., Borges, J.P., Kovalenko, A., Ferreira, I. (2018) Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes. Org. Electron. 62:530–535.10.1016/j.orgel.2018.06.025Suche in Google Scholar

Rosenstein, R.W., Bloomster, T.G. (1989) Solid phase assay employing capillary flow. US patent No. US4855240A, assigned to Becton Dickinson and Co., 1989-08-08.Suche in Google Scholar

Rull-Barrull, J., d’Halluin, M., Le Grognec, E., Felpin, F.X. (2016) Harnessing the Dual Properties of Thiol-Grafted Cellulose Paper for Click Reactions: A Powerful Reducing Agent and Adsorbent for Cu. Angew. Chem. Int. Ed. 55:13549–13552.10.1002/anie.201606760Suche in Google Scholar PubMed

Sakakibara, K., Rosenau, T. (2012) Polythiophene-cellulose composites: synthesis, optical properties and homogeneous oxidative co-polymerization. Holzforschung 66(1):9–19.10.1515/HF.2011.137Suche in Google Scholar

Sameenoi, Y., Nongkai, P.N., Nouanthavong, S., Henry, C.S., Nacapricha, D. (2014) One-step polymer screen-printing for microfluidic paper-based analytical device (µPAD) fabrication. Analyst 139:6580–6588.10.1039/C4AN01624FSuche in Google Scholar

Sarfraz, J., Tobjork, D., Österbacka, R., Linden, M. (2012) Low-Cost Hydrogen Sulfide Gas Sensor on Paper Substrates: Fabrication and Demonstration. IEEE Sens. J. 12(6):1973–1978.10.1109/JSEN.2011.2181498Suche in Google Scholar

Seki, K., Maehira, M., Murakami, T., Shimamura, T. (2012) Anti-falsification paper, and anti-counterfeit printed matter, as well as their authenticity determination method. Japanese patent No. JP4973495B2, assigned to Toppan Printing Co., 2012-07-11.Suche in Google Scholar

Setyono, D., Valiyaveettil, S. (2016) Functionalized paper–A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water. J. Hazard. Mater. 302:120–128.10.1016/j.jhazmat.2015.09.046Suche in Google Scholar PubMed

Simon, D.T., Gabrielsson, E.O., Tybrandt, K., Berggren, M. (2016) Organic bioelectronics: bridging the signaling gap between biology and technology. Chem. Rev. 116:13009–13041.10.1021/acs.chemrev.6b00146Suche in Google Scholar PubMed

Snape, T., Alison, M.A., Davies, J. (2010) Understanding the chemical basis of drug stability and degradation. Pharm. J. 285:416–417.Suche in Google Scholar

Sones, C.L., Katis, I.N., He, P.J.W., Mills, B., Namiq, M.F., Shardlow, P., Ibsen, M., Eason, R.W. (2014) Laser-induced photo-polymerisation for creation of paper-based fluidic devices. Lab Chip 14:4567–4574.10.1039/C4LC00850BSuche in Google Scholar PubMed

Songok, J., Tuominen, M.R., Teisala, H., Haapanen, J., Mäkelä, J.M., Kuusipalo, J., Toivakka, M. (2014) Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow. ACS Appl. Mater. Interfaces 6:20060–20066.10.1021/am5055806Suche in Google Scholar PubMed

Songjaroen, T., Dungchai, W., Chailapakul, O., Henry, C.S., Laiwattanapaisal, W. (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:3392–3398.10.1039/c2lc21299dSuche in Google Scholar PubMed

Su, Y., Zhao, Y., Zhang, H., Feng, X., Shi, L., Fang, J. (2017) Polydopamine functionalized transparent conductive cellulose nanopaper with long-term durability. J. Mater. Chem. C 5:573–581.10.1039/C6TC04928ASuche in Google Scholar

Tsai, T.-T., Huang, T.-H., Chang, C.-J., Yi-Ju Ho, N., Tseng, Y.-T., Chen, C.-F. (2017) Antibacterial cellulose paper made with silver-coated gold nanoparticles. Sci. Rep. 7:3155.10.1038/s41598-017-03357-wSuche in Google Scholar PubMed PubMed Central

Tseng, C.-C., Yang, R.-J., Ju, W.-J., Fu, L.-M. (2018) Microfluidic paper-based platform for whole blood creatinine detection. Chem. Eng. J. 348:117–124.10.1016/j.cej.2018.04.191Suche in Google Scholar

Tucholski, G.R., Russel, E.T., McComsey, D.W. (2014) Thin printable flexible electrochemical cell and method of making the same. US patent No. US8722235B2, assigned to Blue Spark Technologies, Inc., 2014-05-13.Suche in Google Scholar

Udomkun, P., Innawong, B., Jumrusjumroendee, N. (2018) Cellulose acetate and adsorbents supported on cellulose fiber extracted from waxy corn husks for improving shelf life of frying oil. LWT 97:45–52.10.1016/j.lwt.2018.06.035Suche in Google Scholar

Voulgari, A., Gatselou, V.A., Kappi, F.A., Choleva, T.G., Tsogas, G.Z., Vlessidis, A.G., Giokas, D.L. (2017) Solid ink-printed filter paper as a green adsorbent material for the solid-phase extraction of UV filters from water samples. Int. J. Environ. Anal. Chem. 97:1163–1177.10.1080/03067319.2017.1390087Suche in Google Scholar

Wajima, T., Munakata, K. (2011) Material conversion from paper sludge ash in NaOH solution to synthesize adsorbent for removal of Pb2+, NH4+ and PO43 from aqueous solution. J. Environ. Sci. 23:718–724. https://doi.org///doi.org/10.1016/S1001-0742(10)60467-6.10.1016/S1001-0742(10)60467-6Suche in Google Scholar

Wan Ngah, W.S., Hanafiah, M.A. (2008) Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99:3935–3948.10.1016/j.biortech.2007.06.011Suche in Google Scholar PubMed

Wang, B., Guo, R., Zheng, M., Liu, Z., Li, F., Meng, L., Li, T., Luo, Y., Jiang, H. (2018) Embedded binary functional materials/cellulose-based paper as freestanding anode for lithium ion batteries. Electrochim. Acta 260:1–10.10.1016/j.electacta.2017.11.067Suche in Google Scholar

Wang, J., Li, L., Wong, C.L., Madhavi, S. (2012a) Flexible single-walled carbon nanotube/polycellulose papers for lithium-ion batteries. Nanotechnology 23:495401.10.1088/0957-4484/23/49/495401Suche in Google Scholar PubMed

Wang, P., Ge, L., Yan, M., Song, X., Ge, S., Yu, J. (2012b) Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing. Biosens. Bioelectron. 32:238–243.10.1016/j.bios.2011.12.021Suche in Google Scholar PubMed

Wang, Yan, Guo, H., Chen, J., Sowade, E., Wang, Yu, Liang, K., Marcus, K., Baumann, R.R., Feng, Z. (2016) Paper-Based Inkjet-Printed Flexible Electronic Circuits. ACS Appl. Mater. Interfaces 8:26112–26118.10.1021/acsami.6b06704Suche in Google Scholar PubMed

Wang, Z., Tammela, P., Zhang, P., Strømme, M., Nyholm, L. (2014) Efficient high active mass paper-based energy-storage devices containing free-standing additive-less polypyrrole–nanocellulose electrodes. J. Mater. Chem. A 2:7711–7716.10.1039/C4TA01094ASuche in Google Scholar

Wei, Q., Mukaida, M., Kirihara, K., Naitoh, Y., Ishida, T. (2014) Polymer thermoelectric modules screen-printed on paper. RSC Adv. 4:28802–28806.10.1039/C4RA04946BSuche in Google Scholar

Wei, D., Li, Z., Wang, H., Liu, J., Xiao, H., Zheng, A., Guan, Y. (2017) Antimicrobial paper obtained by dip-coating with modified guanidine-based particle aqueous dispersion. Cellulose 24:3901–3910.10.1007/s10570-017-1386-7Suche in Google Scholar

Williamson, A., Rivnay, J., Kergoat, L., Jonsson, A., Inal, S., Uguz, I., Ferro, M., Ivanov, A., Sjöström, T.A., Simon, D.T., Berggren, M., Malliaras, G.G., Bernard, C. (2015) Controlling epileptiform activity with organic electronic ion pumps. Adv. Mater. 27:3138–3144.10.1002/adma.201500482Suche in Google Scholar PubMed

Xia, K., Zhu, Z., Zhang, H., Du, C., Xu, Z., Wang, R. (2018) Painting a high-output triboelectric nanogenerator on paper for harvesting energy from human body motion. Nano Energy 50:571–580.10.1016/j.nanoen.2018.06.019Suche in Google Scholar

Xu, C., Cai, L., Zhong, M., Zheng, S. (2015) Low-cost and rapid prototyping of microfluidic paper-based analytical devices by inkjet printing of permanent marker ink. RSC Adv. 5:4770–4773.10.1039/C4RA13195ASuche in Google Scholar

Xu, X., Zhou, J., Jiang, L., Lubineau, G., Ng, T., Ooi, B.S., Liao, H.-Y., Shen, C., Chen, L., Zhu, J.Y. (2016) Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics. Nanoscale 8:12294–12306.10.1039/C6NR02245FSuche in Google Scholar PubMed

Xu, Y., Li, S., Yue, X., Lu, W. (2018) Review of silver nanoparticles (AgNPs)-cellulose antibacterial composites. BioResources 13:2150–2170.10.15376/biores.13.1.XuSuche in Google Scholar

Yamada, K., Henares, T.G., Suzuki, K., Citterio, D. (2015) Paper-based inkjet-printed microfluidic analytical devices. Angew. Chem. Int. Ed. 54:5294–5310.10.1002/anie.201411508Suche in Google Scholar PubMed

Yang, X., Forouzan, O., Brown, T.P., Shevkoplyas, S.S. (2012) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12:274–280.10.1039/C1LC20803ASuche in Google Scholar PubMed

Yang, R.-J., Tseng, C.-C., Ju, W.-J., Fu, L.-M., Syu, M.-P. (2018) Integrated microfluidic paper-based system for determination of whole blood albumin. Sens. Actuators B, Chem. 273:1091–1097.10.1016/j.snb.2018.07.010Suche in Google Scholar

Yao, B., Yuan, L., Xiao, X., Zhang, J., Qi, Y., Zhou, Jing, Zhou, Jun, Hu, B., Chen, W. (2013) Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2:1071–1078.10.1016/j.nanoen.2013.09.002Suche in Google Scholar

Yen, J.-C. (2001) Watermarks embedded in the permuted image. In: Proceedings of The 2001 IEEE International Symposium on Circuits and Systems. Vol. 2, 6–9 May, Sidney. pp. 53–56.Suche in Google Scholar

Yetisen, A.K., Akram, M.S., Lowe, C.R. (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251.10.1039/c3lc50169hSuche in Google Scholar PubMed

Yoo, J.J., Balakrishnan, K., Huang, J., Meunier, V., Sumpter, B.G., Srivastava, A., Conway, M., Mohana Reddy, A.L., Yu, J., Vajtai, R., Ajayan, P.M. (2011) Ultrathin planar graphene supercapacitors. Nano Lett. 11:1423–1427.10.1021/nl200225jSuche in Google Scholar PubMed

Yuan, L., Xiao, X., Ding, T., Zhong, J., Zhang, X., Shen, Y., Hu, B., Huang, Y., Zhou, J., Wang, Z.L. (2012) Paper‐based supercapacitors for self‐powered nanosystems. Angew. Chem. Int. Ed. 51(20):4934–4938.10.1002/anie.201109142Suche in Google Scholar PubMed

Zemljič, L.F., Vahl, J.V., Kreze, T. (2017) Preparation of antimicrobial paper sheets using chitosan. Cellul. Chem. Technol. 51:75–81.Suche in Google Scholar

Zhamu, A., Jang, B.Z., Shi, J. (2015) Graphene nanocomposites for electrochemical cell electrodes. US patent No. US9190667B2, assigned to Nanotek Instruments, Inc., 2015-11-17.Suche in Google Scholar

Zhang, Y., Aslan, K., Previte, M.J.R., Geddes, C.D. (2008) Metal-enhanced fluorescence from paper substrates: Modified spectral properties of dyes for potential high-throughput surface analysis and assays and as an anti-counterfeiting technology. Dyes Pigments 77:545–549.10.1016/j.dyepig.2007.08.007Suche in Google Scholar

Zhang, Y.-Z., Wang, Y., Cheng, T., Lai, W.-Y., Pang, H., Huang, W. (2015a) Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem. Soc. Rev. 44:5181–5199.10.1039/C5CS00174ASuche in Google Scholar PubMed

Zhang, Y., Bai, J., Ying, J.Y. (2015b) A stacking flow immunoassay for the detection of dengue-specific immunoglobulins in salivary fluid. Lab Chip 15:1465–1471.10.1039/C4LC01127ASuche in Google Scholar PubMed

Zhang, G., Liao, Q., Zhang, Z., Liang, Q., Zhao, Y., Zheng, X., Zhang, Y. (2016) Novel Piezoelectric Paper-Based Flexible Nanogenerators Composed of BaTiO3 Nanoparticles and Bacterial Cellulose. Adv. Sci. 3:1500257.10.1002/advs.201500257Suche in Google Scholar PubMed PubMed Central

Zhang, Z., Chang, H., Xue, B., Zhang, S., Li, X., Wong, W.-K., Li, K., Zhu, X. (2018) Near-infrared and visible dual emissive transparent nanopaper based on Yb(III)–carbon quantum dots grafted oxidized nanofibrillated cellulose for anti-counterfeiting applications. Cellulose 25:377–389.10.1007/s10570-017-1594-1Suche in Google Scholar

Zhao, M., Li, H., Liu, W., Guo, Y., Chu, W. (2016) Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice. Biosens. Bioelectron. 79:581–588.10.1016/j.bios.2015.12.099Suche in Google Scholar PubMed

Zhong, Q., Zhong, J., Hu, B., Hu, Q., Zhou, J., Wang, Z.L. (2013) A paper-based nanogenerator as a power source and active sensor. Energy Environ. Sci. 6:1779–1784.10.1039/c3ee40592cSuche in Google Scholar

Zhu, H., Fang, Z., Preston, C., Li, Y., Hu, L. (2014) Transparent paper: fabrications, properties, and device applications. Energy Environ. Sci. 7:269–287.10.1039/C3EE43024CSuche in Google Scholar

Zolin, L. Large-scale Production of Paper-based Li-ion Cells. Springer International Publishing, Cham, 2017.10.1007/978-3-319-39016-1Suche in Google Scholar

Received: 2019-04-23
Accepted: 2019-08-10
Published Online: 2019-10-30
Published in Print: 2019-11-18

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Review
  3. A broad overview on innovative functionalized paper solutions
  4. Chemical pulping
  5. Suitability of eight years kadam tree (Neolamarckia cadamba) in chemical pulping
  6. Bleaching
  7. Using Oxone and TAED activator in non-chlorine bleaching of soda bagasse pulp
  8. Impact of dissolved organic matter in D0- and AD0-stages in bleaching of birch kraft pulp
  9. Paper technology
  10. Effects of a stylus on the surface roughness determination in a contact method for paper and paperboard
  11. Structure analysis of three non-wood materials for liner paper
  12. Paper chemistry
  13. The influences of chlorhexidine and modified galactomannan additions on the physical and antibacterial properties of paper
  14. Optimization of the process variables for treating cellulose fiber with NaOH/urea aqueous solution for improved water retention value and paper strength
  15. The application of organosilicon modified polyurethane in reinforcing traditional paper
  16. Effect of ionic liquid pretreatment on paper physical property and pulp refining performance
  17. Coating
  18. Antibacterial effect of Ag nanoparticles into the paper coatings
  19. Facile fabrication of hydrophobic cellulosic paper with good barrier properties via PVA/AKD dispersion coating
  20. Printing
  21. Enhanced ink-absorption performance of inkjet printing paper-based patterns with core-shell-structure CaCO3@SiO2 pigments
  22. Application of gradient method for separately analyzing optical and mechanical dot gain of electrophotography prints
  23. Effect of the paper surface properties on the ink transfer parameters in offset printing
  24. Environmental impact
  25. Novel methods for monitoring the sludge dewatering operation of a belt filter: a mill study
  26. Lignin
  27. Structural characterization of the bagasse lignin pretreated using solid alkali
Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/npprj-2019-0036/html
Button zum nach oben scrollen