Startseite Mathematik K-theory of oriented flag manifolds
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

K-theory of oriented flag manifolds

  • Vimala Ramani EMAIL logo
Veröffentlicht/Copyright: 7. Mai 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We compute the complex K-ring of oriented flag manifolds (n1, … , nk), k ≥ 3, of type (n1, … , nk). We use the representation theory of spinor groups and the Hodgkin spectral sequence for the computation of the K-ring.

MSC 2010: 55N15; 55T99

Dedicated to Professor Parameswaran Sankaran on the occasion of his 65th birthday

The research was supported by National Board for Higher Mathematics, Department of Atomic Energy, Government of India, Research Project grant No.02011/52/2023-NBHM (R.P)/R&D-II/13598.


Acknowledgement

The author is indebted to Professor Parameswaran Sankaran for very helpful discussions and encouragement, to Shilpa Gondhali for discussions and her suggestion to simplify the notations. The author thanks the anonymous referee for very valuable comments and suggestions which improved the paper. The author thanks The Institute of Mathematical Sciences, Chennai, for the facilities provided under the Associateship Programme for College and University teachers.

  1. (Communicated by Tibor Macko)

References

[1] Antoniano, E.—Gitler, S.—Ucci, J.—Zvengrowski, P.: On the K-theory and parallelizability of projective Stiefel manifolds, Bol. Soc. Mat. Mex. 31(1) (1986), 29–46.Suche in Google Scholar

[2] Barufatti, N. E.—Hacon, D.: K-theory of projective Stiefel manifolds, Trans. Amer. Math. Soc. 352(7) (2000), 3189–3209.10.1090/S0002-9947-00-02614-3Suche in Google Scholar

[3] Basu, S.—Chakraborty, P.: On the cohomology ring and upper characteristic rank of Grassmannian of oriented 3-planes, J. Homotopy Relat. Struct. 15(1) (2020), 27–60.10.1007/s40062-019-00244-1Suche in Google Scholar

[4] Cartan, H.—Eilenberg, S.: Homological Algebra, Princeton University Press, Princeton, 1956.10.1515/9781400883844Suche in Google Scholar

[5] Hodgkin, L. H.—Snaith, V. P.: Topics in K-Theory. The Equivariant K¨unneth Theorem in K-theory. Dyer-Lashof operations in K-Theory. Lecture Notes in Math., Vol. 496, Springer-Verlag, New York, 1975.Suche in Google Scholar

[6] He, C.: Cohomology rings of the real and oriented partial flag manifolds, Topology Appl. 279 (2020), Art. ID 107239.10.1016/j.topol.2020.107239Suche in Google Scholar

[7] Husemoller, D.: Fibre Bundles. Grad. Texts in Math., Vol. 20, Springer-Verlag, New York, 1975.Suche in Google Scholar

[8] Korbaš, J.—Rusin, T.: A note on the Z2-cohomology algebra of oriented Grassmann manifolds, Rend. Circ. Mat. Palermo (2) 65(3) (2016), 507–517.10.1007/s12215-016-0249-7Suche in Google Scholar

[9] MacLane, S.: Homology, Grundlehren Math. Wiss., Vol 114, Springer-Verlag, Berlin, 1967.Suche in Google Scholar

[10] Minami, H.: K-groups of symmetric spaces I, Osaka J. Math. 12 (1975), 623–634.Suche in Google Scholar

[11] Pittie, H. : Homogeneous vector bundles on homogeneous spaces, Topology 11(2) (1972), 199–203.10.1016/0040-9383(72)90007-9Suche in Google Scholar

[12] Podder, S.—Sankaran, P.: K-theory of real Grassmann manifolds, Homology Homotopy Appl. 25(1) (2023), 401–419.10.4310/HHA.2023.v25.n2.a17Suche in Google Scholar

[13] Roux, A.: Application de la suite spectrale d’Hodgkin au calcul de la K-theorie des varietes de Stiefel, Bull. Soc. Math. France 99 (1971), 345–368.10.24033/bsmf.1726Suche in Google Scholar

[14] Rusin, T.: A note on the cohomology ring of the oriented Grassmann manifolds G˜n,4, Arch. Math. (Brno) 55(5) (2019), 319–331.10.5817/AM2019-5-319Suche in Google Scholar

[15] Sankaran, P.—Zvengrowski, P.: Stable parallelizability of partially oriented flag manifolds, Pacific J. Math. 128(2) (1987), 349–359.10.2140/pjm.1987.128.349Suche in Google Scholar

[16] Sankaran, P.—Zvengrowski, P.: K-theory of oriented Grassmann manifolds, Math. Slovaca 47(3) (1997), 319–338.Suche in Google Scholar

Received: 2024-03-29
Accepted: 2024-11-19
Published Online: 2025-05-07
Published in Print: 2025-04-28

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0031/html
Button zum nach oben scrollen