Startseite Mathematik Generalized Baker’s result and stability of functional equations using fixed point results
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Generalized Baker’s result and stability of functional equations using fixed point results

  • Supriti Laha und Lakshmi Kanta Dey EMAIL logo
Veröffentlicht/Copyright: 7. Mai 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Hyers-Ulam stability of functional equation in single variable is studied in non-triangular metric spaces. We derive it as applications of some fixed point results developed on the said structure. A general version of Baker’s theorem is also deduced as a consequence.

2020 Mathematics Subject Classification: Primary 47H10; 39B82; Secondary 54H25

Acknowledgement

The authors are thankful to Subhadip Pal, NIT Durgapur, for his suggestions during the preparation of the manuscript. The authors deeply appreciate the perceptive review, which has significantly enriched this work.

  1. (Communicated by David Buhagiar)

References

[1] Abdollahpour, M.—Aghayari, R.—Rassias, M. TH.: Hyers-Ulam stability of associated Laguerre differential equations in a subclass of analytic functions, J. Math. Anal. Appl. 437(1) (2016), 605–612.10.1016/j.jmaa.2016.01.024Suche in Google Scholar

[2] Abdollahpour, M.—Rassias, M. TH.: Hyers–Ulam stability of hypergeometric differential equations, Aequationes Math. 93(4) (2019), 691–698.10.1007/s00010-018-0602-3Suche in Google Scholar

[3] Aczél, J.—Dhombres, J.: Functional Equations in Several Variables, Cambridge University Press, 1989.10.1017/CBO9781139086578Suche in Google Scholar

[4] Aoki, T.: On the Stability of the linear transformation in Banach Spaces, J. Math. Soc. Japan 2(1–2) (1950), 64–66.10.2969/jmsj/00210064Suche in Google Scholar

[5] Baker, J. A.: The stability of certain functional equations, Proc. Amer. Math. Soc. 112 (1991), 729–732.10.1090/S0002-9939-1991-1052568-7Suche in Google Scholar

[6] Bourgin, D. G.: Approximate isometries, Bull. Amer. Math. Soc. 52 (1946), 704–714.10.1090/S0002-9904-1946-08638-3Suche in Google Scholar

[7] Bourgin, D. G.: Classes of transformation and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223–237.10.1090/S0002-9904-1951-09511-7Suche in Google Scholar

[8] Bourgin, D. G.: Approximate isometries on finite dimensional Banach spaces, Trans. Amer. Math. Soc. 207 (1975), 309–328.10.1090/S0002-9947-1975-0370137-4Suche in Google Scholar

[9] Brzdek, J.—Popa, D.—Rasa, I.—Xu, B.: Ulam Stability of Operators, Academic Press, 2018.Suche in Google Scholar

[10] Ćirić, L. B.: Generalized contractions and fixed-point theorems, Publ. LInst. Math. 12(26) (1971), 19–26.Suche in Google Scholar

[11] Ćirić, L. B.: A generalization of Banachs contraction principle, Proc. Amer. Math. Soc. 45(2) (1974), 267–273.10.1090/S0002-9939-1974-0356011-2Suche in Google Scholar

[12] Czerwik, S.: On the stability of the quadratic mapping in normed spaces, Abh. Math. Semin. Univ. Hambg. 62 (1992), 59–64.10.1007/BF02941618Suche in Google Scholar

[13] Czerwik, S.: Functional Equations and Inequalities in Several Variables, World Scientific, 2002.10.1142/9789812778116Suche in Google Scholar

[14] Das, P.—Dey, L. K.: Fixed point of contractive mappings in generalized metric spaces, Math. Slovaca 59(4) (2009), 499–504.10.2478/s12175-009-0143-2Suche in Google Scholar

[15] Gajda, Z.: On stability of additive mappings, Int. J. Math. Math. Sci. 14(3) (1991), 431–434.10.1155/S016117129100056XSuche in Google Scholar

[16] Gruber, P. M.: Stability of isometries, Trans. Amer. Math. Soc. 245 (1978), 263–277.10.1090/S0002-9947-1978-0511409-2Suche in Google Scholar

[17] Hyers, D. H.: On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27(4) (1941), 222–224.10.1073/pnas.27.4.222Suche in Google Scholar PubMed PubMed Central

[18] Hyers, D. H.—Ulam, S. M.: On approximate isometries, Bull. Amer. Math. Soc. 51 (1945), 288–292.10.1090/S0002-9904-1945-08337-2Suche in Google Scholar

[19] Hyers, D. H.—Ulam, S. M.: Approximate isometries of the space of continuous functions, Ann. Math. 48 (1947), 285–289.10.2307/1969171Suche in Google Scholar

[20] Hyers, D. H.—Rassias, M. TH.: Approximate homomorphisms, Aequationes Math. 44(2) (1992), 125–153.10.1007/BF01830975Suche in Google Scholar

[21] Hyers, D. H.—Isac, G.—Rassias, M. TH.: Stability of Functional Equations in Several Variables, Birkhauser, 1998.10.1007/978-1-4612-1790-9Suche in Google Scholar

[22] Jleli, M.—Samet, B.: A generalized metric space and related fixed point theorems, Fixed Point Theory Appl. 2015 (2015), Art. No. 61.10.1186/s13663-015-0312-7Suche in Google Scholar

[23] Jung, S. M.: On the Hyers-Ulam stability of the functional equation that have the quadratic property, J. Math. Anal. Appl. 222 (1998), 126137.10.1006/jmaa.1998.5916Suche in Google Scholar

[24] Jung, S. M.: Hyers-Ulam-Rassias stability of the Jensen’s equations and its application, Proc. Amer. Math. Soc. 126 (1998), 3137–3143.10.1090/S0002-9939-98-04680-2Suche in Google Scholar

[25] Jung, S. M.: Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17(10) (2004), 1135–1140.10.1016/j.aml.2003.11.004Suche in Google Scholar

[26] Jung, S. M.: Hyers–Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl. 311(1) (2005), 139–146.10.1016/j.jmaa.2005.02.025Suche in Google Scholar

[27] Jung, S. M.: Hyers–Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl. 320(2) (2006), 549–561.10.1016/j.jmaa.2005.07.032Suche in Google Scholar

[28] Jung, S. M.: Legendre’s differential equation and its Hyers-Ulam stability, Abstr. Appl. Anal. 2007(1) (2007), Art. ID 56419.10.1155/2007/56419Suche in Google Scholar

[29] Jung, S. M.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, 2011.10.1007/978-1-4419-9637-4Suche in Google Scholar

[30] Jung, S. M.—Popa, D.—Rassias, M. TH.: On the stability of the linear functional equation in a single variable on complete metric groups, J. Global Optim. 59 (2014), 165–171.10.1007/s10898-013-0083-9Suche in Google Scholar

[31] Jung, S. M.—Rassias, M. TH.: A linear functional equation of third order associated with the Fibonacci numbers, Abstr. Appl. Anal. 2014(1) (2014), Art. ID 137468.10.1155/2014/137468Suche in Google Scholar

[32] Jung, S. M.—Rassias, M. TH.—Mortici, C.: On a functional equation of trigonometric type, Appl. Math. Comput. 252 (2015), 294–303.10.1016/j.amc.2014.12.019Suche in Google Scholar

[33] Kannappan, P.: Functional Equations and Inequalities with Applications, Springer, 2009.10.1007/978-0-387-89492-8Suche in Google Scholar

[34] Karapinar, E.—Khojasteh, F.—Mitrović, Z. D.—Rakočević, V.: On surrounding quasi-contractions on non-triangular metric spaces, Open Math. 18(1) (2020), 1113–1121.10.1515/math-2020-0083Suche in Google Scholar

[35] Khojasteh, F.—Khandani, H.: Scrutiny of some fixed point results by S-operators without triangular inequality, Math. Slovaca 70 (2020), 467–476.10.1515/ms-2017-0364Suche in Google Scholar

[36] Lee, Y. H.—Jung, S. M.—Rassias, M. TH.: On an n-dimensional mixed type additive and quadratic functional equation, Appl. Math. Comput. 228 (2014), 13–16.10.1016/j.amc.2013.11.091Suche in Google Scholar

[37] Lee, Y. H.—Jung, S. M.—Rassias, M. TH.: Uniqueness theorems on functional inequalities concerning cubic-quadratic-additive equation, J. Math. Inequal. 12(1) (2018), 43–61.10.7153/jmi-2018-12-04Suche in Google Scholar

[38] Mortici, C.—Rassias, M. TH.: On the stability of a functional equation associated with the Fibonacci numbers, Abstr. Appl. Anal. 2014 (2014), Art. ID 546046.10.1155/2014/546046Suche in Google Scholar

[39] Park, C.—Rassias, M. TH.: Additive functional equations and partial multipliers in C*-algebras, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113 (2019), 2261–2275.10.1007/s13398-018-0612-ySuche in Google Scholar

[40] Rassias, M. TH.: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.10.1090/S0002-9939-1978-0507327-1Suche in Google Scholar

[41] Rassias, M. TH.: On the stability of the quadratic functional equation and its applications, Stud. Univ. Babeş-Bolyai Math. 43 (1998), 89–124.Suche in Google Scholar

[42] Rassias, M. TH.: Functional Equations and Inequalities. Mathematics and Its Applications, Vol. 518, 2000.10.1007/978-94-011-4341-7Suche in Google Scholar

[43] Rassias, M. TH.: Solution of a quadratic stability Hyers-Ulam type problem, Ricerche Mat. 50 (2001), 9–17.Suche in Google Scholar

[44] Sahoo, P. K.: Introduction to Functional Equations, CRC Press, 2011.10.1201/b10722Suche in Google Scholar

[45] Smajdor, W.: Note on a Jensen type functional equation, Publ. Math. Debrecen 63(4) (2003), 703–714.10.5486/PMD.2003.2846Suche in Google Scholar

[46] Trif, T.: On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions, J. Math. Anal. Appl. 272(2) (2002), 604–616.10.1016/S0022-247X(02)00181-6Suche in Google Scholar

[47] Wang, J.: Some further generalizations of the Hyers–Ulam–Rassias stability of functional equations, J. Math. Anal. Appl. 263(2) (2001), 406–423.10.1006/jmaa.2001.7587Suche in Google Scholar

Received: 2024-07-23
Accepted: 2024-10-30
Published Online: 2025-05-07
Published in Print: 2025-04-28

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0029/html
Button zum nach oben scrollen