Startseite Mathematik New and improved oscillation criteria of third-order half-linear delay differential equations via canonical transform
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

New and improved oscillation criteria of third-order half-linear delay differential equations via canonical transform

  • Kannan Suresh , Ganesh Purushothaman , Ethiraju Thandapani und Ercan Tunç EMAIL logo
Veröffentlicht/Copyright: 7. Mai 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the third-order delay differential equation of the form

(a2(t)((a1(t)x(t)))α)+b(t)xα(σ(t))=0

under the conditions t01a21/α(t)dt= and t01a1(t)dt< is studied. Our newly proposed approach allow us to reduce the number of conditions required for all solutions of the considered equation to be oscillatory. The results established here are new, improve and complement some oscillation results known for the studied equation. Examples are provided to show the strength and novelty of the results obtained.

MSC 2010: 34C10; 34K11
  1. (Communicated by Jozef Džurina)

References

[1] Agarwal, R. P.—Bohner, M.—Li, T.—Zhang, C.: Oscillation of third-order nonlinear delay differential equations, Taiwanese J. Math. 17 (2013), 545–558.10.11650/tjm.17.2013.2095Suche in Google Scholar

[2] Agarwal, R. P.—Bohner, M.—Li, T.—Zhang, C.: A Philos-type theorem for third-order nonlinear retarded dynamic equations, Appl. Math. Comput. 249 (2014), 527–531.10.1016/j.amc.2014.08.109Suche in Google Scholar

[3] Agarwal, R. P.—Bohner, M.—Li, W. T.: Nonoscillation and Oscillation: Theory for Functional Differential Equations, Marcel Dekker, New York, 2004.10.1201/9780203025741Suche in Google Scholar

[4] Baculíková, B.: Oscillation of strongly noncanonical equations, J. Nonlinear Sci. Appl. 11 (2018), 1124–1128.10.22436/jnsa.011.10.02Suche in Google Scholar

[5] Baculíková, B.—Džurina, J.: Oscillation of the third order Euler differential equation with delay, Math. Bohem. 139 (2014), 649–655.10.21136/MB.2014.144141Suche in Google Scholar

[6] Baculíková, B.—Džurina, J.: Oscillation of third-order nonlinear differential equations, Appl. Math. Lett. 24 (2011), 466–470.10.1016/j.aml.2010.10.043Suche in Google Scholar

[7] Baculíková, B.—Džurina, J.: Oscillation of third-order functional differential equations, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Art. No. 43.10.14232/ejqtde.2010.1.43Suche in Google Scholar

[8] Baculíková, B.—Džurina, J.—Jadlovská, I.: On asymptotic properties of solutions to third-order delay differential equations, Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Art. No. 7.10.14232/ejqtde.2019.1.7Suche in Google Scholar

[9] Chatzarakis, G. E.—Džurina, J.—Jadlovská, I.: Oscillatory and asymptotic properties of third-order quasilinear delay differential equations, J. Inequal. Appl. 2019 (2019), Art. No. 23.10.1186/s13660-019-1967-0Suche in Google Scholar

[10] Džurina, J.—Jadlovská, I.: Oscillation of third-order differential equations with noncanonical operators, Appl. Math. Comput. 336 (2018), 394–402.10.1016/j.amc.2018.04.043Suche in Google Scholar

[11] Džurina, J.—Baculíková, B.—Jadlovská, I: Integral oscillation criteria for third-order differential equations with delay argument, Int. J. Pure Appl. Math. 108 (2016), 169–183.10.12732/ijpam.v108i1.15Suche in Google Scholar

[12] Elabbasy, E. M.—Hassan, T. S.—Elmatary, B. M.: Oscillation criteria for third order delay nonlinear differential equations, Electron. J. Qual. Theory Differ. Equ. 2012 (2012), Art. No. 5.10.14232/ejqtde.2012.1.5Suche in Google Scholar

[13] Grace, S. R.—Agarwal, R. P.—Pavani, R.—Thandapani, E.: On the oscillation of certain third order nonlinear functional differential equations, Appl. Math. Comput. 202 (2008), 102–112.10.1016/j.amc.2008.01.025Suche in Google Scholar

[14] Grace, S. R.—Graef, J. R.—Tunç, E.: On oscillatory behavior of third order half-linear delay differential equations, Math. Slovaca 73 (2023), 729–736.10.1515/ms-2023-0053Suche in Google Scholar

[15] Grace, S. R.—Graef, J. R.—Tunç, E.: On the oscillation of certain third order nonlinear dynamic equations with a nonlinear damping term, Math. Slovaca 67 (2017), 501–508.10.1515/ms-2016-0284Suche in Google Scholar

[16] Grace, S. R.—Jadlovská, I.—Zafer, A.: On oscillation of third-order noncanonical delay differential equations, Appl. Math. Comput. 362 (2019), Art. ID 124530.10.1016/j.amc.2019.06.044Suche in Google Scholar

[17] Graef, J. R.—Saker, S. H.: Oscillation theory of third-order nonlinear functional differential equations, Hiroshima Math. J. 43 (2013), 49–72.10.32917/hmj/1368217950Suche in Google Scholar

[18] Jadlovská, I.—Chatzarakis, G. E.—Džurina, J.—Grace, S. R.: On sharp oscillation criteria for general third-order delay differential equations, Mathematics 9 (2021), Art. No. 1675.10.3390/math9141675Suche in Google Scholar

[19] Koplatadze, R. G.—Chanturiya, T. A.: Oscillating and monotone solutions of first-order differential equations with deviating argument, Differ. Uravn. 18 (1982), 1463–1465 (in Russian).Suche in Google Scholar

[20] Kuramoto, Y.—Yamada, T.: Turbulent state in chemical reactions, Prog. Theor. Phys. 56 (1976), 679–681.10.1143/PTP.56.679Suche in Google Scholar

[21] Li, T.—Frassu, S.—Viglialoro, G.: Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys. 74 (2023), Art. No. 109.10.1007/s00033-023-01976-0Suche in Google Scholar

[22] Li, T.—Pintus, N.—Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys. 70 (2019), Art. No. 86.10.1007/s00033-019-1130-2Suche in Google Scholar

[23] Li, T.—Viglialoro, G.: Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations 34 (2021), 315–336.10.57262/die034-0506-315Suche in Google Scholar

[24] Li, T.—Zhang, C.—Baculíková, B.—Džurina, J.: On the oscillation of third-order quasi-linear delay differential equations, Tatra Mt. Math. Publ. 48 (2011), 117–123.10.2478/v10127-011-0011-7Suche in Google Scholar

[25] Li, T.—Han, Z.—Sun, S.—Zhao, Y.: Oscillation results for third order nonlinear delay dynamic equations on time scales, Bull. Malays. Math. Sci. Soc. 34 (2011), 639–648.Suche in Google Scholar

[26] Li, T.—Rogovchenko, Y. V.: On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett. 67 (2017), 53–59.10.1016/j.aml.2016.11.007Suche in Google Scholar

[27] Li, T.—Rogovchenko, Y. V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett. 105 (2020), Art. ID 106293.10.1016/j.aml.2020.106293Suche in Google Scholar

[28] Michelson, D.: Steady solutions of the Kuramoto-Sivashinsky equation, Phys. D 19 (1986), 89–111.10.1016/0167-2789(86)90055-2Suche in Google Scholar

[29] Omar, N.—Moaaz, O.—Alnemer, G.—Elabbasy, E. M.: New results on the oscillation of solutions of third-order differential equations with multiple delays, Symmetry 15 (2023), Art. No. 1920.10.3390/sym15101920Suche in Google Scholar

[30] Padhi, S.—Pati, S.: Theory of Third-Order Differential Equations, Springer, New Delhi, 2014.10.1007/978-81-322-1614-8Suche in Google Scholar

[31] Parhi, N.—Padhi, S.: On asymptotic behavior of delay-differential equations of third order, Nonlinear Anal. 34 (1998), 391–403.10.1016/S0362-546X(97)00600-7Suche in Google Scholar

[32] Philos, C. G.: On the existence of nonoscillatory solutions tending to zero at 1 for differential equations with positive delays, Arch. Math. (Basel) 36 (1981), 168–178.10.1007/BF01223686Suche in Google Scholar

[33] Prabaharan, N.—Thandapani, E.—Tunç, E.: Asymptotic behavior of semi-canonical third-order delay differential equations with a superlinear neutral term, Palest. J. Math. 12 (2023), 473–483.Suche in Google Scholar

[34] Saker, S. H.—Džurina, J.: On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohem. 135 (2010), 225–237.10.21136/MB.2010.140700Suche in Google Scholar

[35] Saranya, K.—Piramanantham, V.—Thandapani, E.—Tunç, E.: Asymptotic behavior of semi-canonical third-order nonlinear functional differential equations, Palest. J. Math. 11 (2022), 433–442.Suche in Google Scholar

[36] Srinivasan, R.—Saravanan, S.—Thandapani, E.—Tunç, E.: Oscillation of noncanonical third-order delay differential equations via canonical transform, Appl. Math. E-Notes 23 (2023), 265–273.Suche in Google Scholar

[37] Thandapani, E.—Goktürk, B.—Özdemir, O.—Tunç, E.: Oscillatory behavior of semi-canonical nonlinear neutral differential equations of third-order via comparison principles, Qual. Theory Dyn. Syst. 22 (2023), Art. No. 30.10.1007/s12346-022-00731-6Suche in Google Scholar

[38] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations, Trans. Amer. Math. Soc. 189 (1974), 319–327.10.1090/S0002-9947-1974-0330632-XSuche in Google Scholar

Received: 2024-02-15
Accepted: 2024-10-30
Published Online: 2025-05-07
Published in Print: 2025-04-28

© 2025 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2025-0025/html
Button zum nach oben scrollen