Startseite Mathematik Some fixed point theorems in generalized parametric metric spaces and applications to ordinary differential equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some fixed point theorems in generalized parametric metric spaces and applications to ordinary differential equations

  • Abhishikta Das , Hijaz Ahmad und Tarapada Bag EMAIL logo
Veröffentlicht/Copyright: 15. Oktober 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The objective of this work is the construction of `Boyd-Wong fixed point theorem’ in the setting of generalized parametric metric space and discussion its application on existence criteria of solutions to a second order initial value problem. Also an analogue of `Banach type fixed point theorem’ of generalized parametric metric space is proved and its application on the existence of a solution of first order periodic boundary value differential equation is examined.

Acknowledgement

The authors are thankful to the Editor-in-Chief, Editors, and Reviewers of the journal Mathematica Slovaca for their valuable comments which helped us to revise the manuscript in the present form.

  1. Communicated by Michal Fečkan

References

[1] Banach, S.: Sur les operations dans las ensembles abstraits et leur application aux equations integrales, Fund. Math. 3(1) (1922), 133–181.10.4064/fm-3-1-133-181Suche in Google Scholar

[2] Boyd, D. W.—Wong, J. S. W.: On nonlinear contractions, Proc. Amer. Math. Soc. 20(2) (1969), 458–464.10.2307/2035677Suche in Google Scholar

[3] Cetkin, V.: Parametric 2-metric spaces and some fixed point results, New Trend Math. Sci. 7(4) (2019), 503–511.10.20852/ntmsci.2019.391Suche in Google Scholar

[4] Czerwik, S.: Contraction mappings in b-metric spaces, Acta Math. Univ. Ostrav. 1 (1993), 5–11.Suche in Google Scholar

[5] Das, A.—Bag, T.: A generalization to parametric metric spaces, Int. J. Nonlinear Anal. Appl. 14(1) (2023), 229–244.10.26713/cma.v14i2.2083Suche in Google Scholar

[6] Das, A.—Bag, T.: A study on parametric S-metric spaces, Commun. Math. Appl. 13(3) (2022), 921–933.10.26713/cma.v13i3.1789Suche in Google Scholar

[7] Das, A.—Kundu, A.—Bag, T.: A new approach to generalize metric functions, Int. J. Nonlinear Anal. Appl. 14(3) (2023), 279–298.Suche in Google Scholar

[8] Fríchet, M.: Sur quelques points du calcul fonctionnel, Rend. del Circ. Matem. Palermo 22 (1906), 1–72.10.1007/BF03018603Suche in Google Scholar

[9] Huang, L. G.—Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2) (2007), 1468–1476.10.1016/j.jmaa.2005.03.087Suche in Google Scholar

[10] Hussain, N.—Khaleghizadeh, S.—Salimi, P.—Abdou, A. A. N.: A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces, Abstr. Appl. Anal. 2014 (2014), Art. ID 690139.10.1155/2014/690139Suche in Google Scholar

[11] Ladde, G. S.—Lakshmikantham, V.—Vatsala, A. S.: Monotone Iterative Techniques for Nonlinear Differential Equations. Monograph & Studies in Mathematics, Vol. 27, Pitman Publishing, 1985.Suche in Google Scholar

[12] Priyobarta, N.—Rohen, Y.—Radenovic, S.: Fixed point theorems on parametric A-metric space, Am. J. Appl. Math. Stat. 6(1) (2018), 1–5.Suche in Google Scholar

[13] Ran, A.—Reurings, M.: A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc. 132(5) (2003), 1435–1443.10.1090/S0002-9939-03-07220-4Suche in Google Scholar

[14] Sedghi, S.—Shobe, N.—Aliouche, A.: A generalization of fixed point theorems in S-metric space, Mat. Vesn. 64(3) (2012), 258–266.Suche in Google Scholar

[15] Som, S.—Bera, A.—Dey, L. K.: Some remarks on the metrizability of F-metric spaces, J. Fixed Point Theory Appl. 22(17) (2020).10.1007/s11784-019-0753-4Suche in Google Scholar

[16] Taş, N.—Özgür, N.: On parametric-metric Spaces and fixed-point type theorems for expansive mappings, J. Math. 2016 (2016), Art. ID 4746732.10.1155/2016/4746732Suche in Google Scholar

[17] Taş, N.—Özgür, N.: Some fixed-point results on parametric Nb-metric spaces, Commun. Korean Math. Soc. 33(3) (2018), 943–960.Suche in Google Scholar

Received: 2023-04-25
Accepted: 2023-12-29
Published Online: 2024-10-15
Published in Print: 2024-10-28

© 2024 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. On monoids of endomorphisms of a cycle graph
  2. The influence of separating cycles in drawings of K5e in the join product with paths and cycles
  3. Completely hereditarily atomic OMLS
  4. New notes on the equation d(n) = d(φ(n)) and the inequality d(n) > d(φ(n))
  5. On the monogenity and Galois group of certain classes of polynomials
  6. Other fundamental systems of solutions of the differential equation (D2 – 2αD + α2 + β2)ny = 0, β ≠ 0
  7. Characterization of continuous additive set-valued maps “modulo K” on finite dimensional linear spaces
  8. Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals
  9. Global Mild Solutions For Hilfer Fractional Neutral Evolution Equation
  10. The discrete fractional Karamata theorem and its applications
  11. Complex Generalized Stancu-Schurer Operators
  12. New oscillatory criteria for third-order differential equations with mixed argument
  13. Cauchy problem for a loaded hyperbolic equation with the Bessel operator
  14. Liouville type theorem for a system of elliptic inequalities on weighted graphs without (p0)-condition
  15. On the rate of convergence for the q-Durrmeyer polynomials in complex domains
  16. Some fixed point theorems in generalized parametric metric spaces and applications to ordinary differential equations
  17. On the relation of Kannan contraction and Banach contraction
  18. Extropy and statistical features of dual generalized order statistics’ concomitants arising from the Sarmanov family
  19. Residual Inaccuracy Extropy and its properties
  20. Archimedean -groups with strong unit: cozero-sets and coincidence of types of ideals
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0093/pdf
Button zum nach oben scrollen