Startseite Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals

  • Muhammad Aamir Ali , Péter Kórus EMAIL logo und Juan E. Nápoles Valdés
Veröffentlicht/Copyright: 15. Oktober 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we prove some new inequalities of Hermite–Hadamard type for differentiable functions with h-convex derivatives. It is also shown that the newly established inequalities are extension of the existing inequalities in the literature. Finally, we give applications of the new results and outline some future problems.

  1. Communicated by Marek Balcerzak

References

[1] Akgül, A.—Khoshnaw, S. H. A.: Application of fractional derivative on non-linear biochemical reaction models, Int. J. Intell. Netw. 1 (2020), 52–58.10.1016/j.ijin.2020.05.001Suche in Google Scholar

[2] Ali, M. A.—Soontharanon, J.—Budak, H.—Sitthiwirattham, T.—Fečkan, M.: Fractional Hermite–Hadamard inequality and error estimates for Simpson’s formula through convexity with respect to a pair of functions, Miskolc Math. Notes 24 (2023), 553–568.10.18514/MMN.2023.4214Suche in Google Scholar

[3] Amer Latif, M.: Refinements and applications of Hermite–Hadamard-type inequalities using Hadamard fractional integral operators and GA-convexity, Mathematics 12 (2024), Art. No. 442.10.3390/math12030442Suche in Google Scholar

[4] Dragomir, S. S.—Pearce, C. E. M.: Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs, Victoria University, 2000, available at https://rgmia.org/papers/monographs/Master.pdf.Suche in Google Scholar

[5] Hilfer, R.: Applications of Fractional Calculus in Physics, World Scientific Publishing, Singapore, 2000.10.1142/9789812817747Suche in Google Scholar

[6] Kórus, P.: Some Hermite–Hadamard type inequalities for functions of generalized convex derivative, Acta Math. Hungar. 165 (2021), 463–473.10.1007/s10474-021-01187-xSuche in Google Scholar

[7] Kórus, P.—Nápoles Valdés, J. E.: q-Hermite–Hadamard inequalities for functions with convex or h-convex q-derivative, Math. Inequal. Appl. 25 (2022), 601–610.10.7153/mia-2022-25-36Suche in Google Scholar

[8] Macías-Díaz, J. E.—Khan, M. B.—Noor, M. A.—Mousa, A. A. A.—Alghamdi, S. M.: Hermite-Hadamard inequalities for generalized convex functions in interval-valued calculus, AIMS Mathematics 7 (2022), 4266–4292.10.3934/math.2022236Suche in Google Scholar

[9] Miller, K. S.—Ross, B.: An Introduction to the Fractional Calculus and Differential Equations, Wiley, New York, 1993.Suche in Google Scholar

[10] Mohammadi, H.—Kumar, S.—Rezapour, S.—Etemad, S.: A theoretical study of the CaputoFabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals 144 (2021), 110668.10.1016/j.chaos.2021.110668Suche in Google Scholar

[11] Ojo, A.—Olanipekun, P. O.: Refinements of generalised Hermite–Hadamard inequality, Bull. Sci. Math. 188 (2023), 103316.10.1016/j.bulsci.2023.103316Suche in Google Scholar

[12] Özcan, S.: Hermite–Hadamard type inequalities for m-convex and (α, m)-convex functions, J. Inequal. Appl. 2020 (2020), Art. No. 175.10.1186/s13660-020-02442-5Suche in Google Scholar

[13] Özdemir, M. E.—Akdemir, A. O.—Set, E.: On (h-m)-Convexity and Hadamard-Type Inequalities, Transylv. J. Math. Mechanics 8 (2016), 51–58.Suche in Google Scholar

[14] Podlubny, I.: Fractional Differential Equations, Academic Press, San Diego, 1999.Suche in Google Scholar

[15] Samko, S. G.—Kilbas, A. A.—Marichev, O. I.: Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.Suche in Google Scholar

[16] Sarikaya, M. Z.—Set, E.—Yaldiz, H.—Basak, N.: Hermite–Hadamard’s inequalities for fractional integral and related fractional inequalities, Math. Comput. Modelling 57 (2013), 2403–2407.10.1016/j.mcm.2011.12.048Suche in Google Scholar

[17] Sarikaya, M. Z.—Saglam, A.—Yildirim, H.: On some Hadamard type inequalities for h-convex functions, J. Math. Inequal. 2 (2008), 335–341.10.7153/jmi-02-30Suche in Google Scholar

[18] Tariq, M.—Ntouyas—S. K.—Shaikh, A. A.: A comprehensive review of the Hermite–Hadamard inequality pertaining to fractional integral operators, Mathematics 11 (2023), Art. No. 1953.10.3390/math11081953Suche in Google Scholar

[19] Varošanec, S.: On h-convexity, J. Math. Anal. Appl. 326 (2007), 303–311.10.1016/j.jmaa.2006.02.086Suche in Google Scholar

Received: 2023-11-18
Accepted: 2024-05-05
Published Online: 2024-10-15
Published in Print: 2024-10-28

© 2024 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. On monoids of endomorphisms of a cycle graph
  2. The influence of separating cycles in drawings of K5e in the join product with paths and cycles
  3. Completely hereditarily atomic OMLS
  4. New notes on the equation d(n) = d(φ(n)) and the inequality d(n) > d(φ(n))
  5. On the monogenity and Galois group of certain classes of polynomials
  6. Other fundamental systems of solutions of the differential equation (D2 – 2αD + α2 + β2)ny = 0, β ≠ 0
  7. Characterization of continuous additive set-valued maps “modulo K” on finite dimensional linear spaces
  8. Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals
  9. Global Mild Solutions For Hilfer Fractional Neutral Evolution Equation
  10. The discrete fractional Karamata theorem and its applications
  11. Complex Generalized Stancu-Schurer Operators
  12. New oscillatory criteria for third-order differential equations with mixed argument
  13. Cauchy problem for a loaded hyperbolic equation with the Bessel operator
  14. Liouville type theorem for a system of elliptic inequalities on weighted graphs without (p0)-condition
  15. On the rate of convergence for the q-Durrmeyer polynomials in complex domains
  16. Some fixed point theorems in generalized parametric metric spaces and applications to ordinary differential equations
  17. On the relation of Kannan contraction and Banach contraction
  18. Extropy and statistical features of dual generalized order statistics’ concomitants arising from the Sarmanov family
  19. Residual Inaccuracy Extropy and its properties
  20. Archimedean -groups with strong unit: cozero-sets and coincidence of types of ideals
Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2024-0085/html
Button zum nach oben scrollen