Startseite Mathematik Solvability of mixed problems for heat equations with two nonlocal conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Solvability of mixed problems for heat equations with two nonlocal conditions

  • Onur Alp İlhan EMAIL logo , Danyal Soybaş , Shakirbay G. Kasimov und Farhod D. Rakhmanov
Veröffentlicht/Copyright: 4. Dezember 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the solvability of a problem of the heat conduction theory with two nonlocal boundary conditions is investigated. Systems of eigenfunctions of the corresponding operator with two nonlocal boundary conditions are taken into consideration. A theorem on the solvability of the problem of the theory of heat conduction with two nonlocal boundary conditions is given

MSC 2010: Primary 47A75; 58J35
  1. ( Communicated by Alberto Lastra )

References

[1] Bary, N. K: Biorthogonal systems and bases in Hilbert space, Uch. Zap. MGU, Matematika 148(4) (1951), 69–107.Suche in Google Scholar

[2] Cannon, J. R.: The solution of heat equation subject to the specification of energy, Quart. Appl. Math. 21(2) (1963), 155–160.10.1090/qam/160437Suche in Google Scholar

[3] İlhan, O. A.–-Kasimov, Sh. G.–-Rakhmanov, F. D.–-Baskonus, H. M.: On the solvability of a problem of the heat conduction theory with two nonlocal conditions. Abstract Book of the 4th International Conference on Computational Mathematics and Engineering Sciences, April, 2019Suche in Google Scholar

[4] Il’in, V. A.: On the solvability of mixed problems for hyperbolic and parabolic equations, Uspekhi Mat. Nauk. 15(2) (1960), 97–154.10.1070/RM1960v015n02ABEH004217Suche in Google Scholar

[5] Il’in, V. A.: Necessary and sufficient conditions for a subsystem of the eigen- and associated functions of a Keldys bundle of ordinary differential operators to be a basis, Dokl. Akad. Nauk SSSR 227 (1976), 796–799, Engl. transl.: Soviet Math. Dokl. 17 (1976), 513–516.Suche in Google Scholar

[6] Ionkin, N. I.: The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition, Differ. Uravn. 13(2) (1977), 294–304.Suche in Google Scholar

[7] Kasimov, S. G.–-Rakhmanov, F. D.: On a spectral problem of the heat conduction theory with nonlocal boundary conditions, Tashkent Vestnik NUUz 2 (2013), 83–86.Suche in Google Scholar

[8] Kasimov, S. .G.–-Rakhmanov, F. D.: On a spectral problem of the heat conduction theory with nonlocal boundary conditions of the Samarskii-Ionkin type, Tashkent Vestnik NUUz 1–2 (2014).Suche in Google Scholar

[9] Naimark, M. A.: Linear Differential Operators, Nauka, Moscow, 1969.Suche in Google Scholar

[10] Tikhonov, A. N.–-Samarskii, A. A.: Equations of Mathematical Physics, Nauka, Moscow, 1977.Suche in Google Scholar

Received: 2021-05-27
Accepted: 2021-10-15
Published Online: 2022-12-04
Published in Print: 2022-12-16

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0108/pdf
Button zum nach oben scrollen