Startseite A general matrix series inversion pair and associated polynomials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A general matrix series inversion pair and associated polynomials

  • Reshma R. Sanjhira EMAIL logo und B. I. Dave
Veröffentlicht/Copyright: 4. Dezember 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present work, a pair of general inverse matrix series relations is established, and thereby a general class of matrix polynomials is introduced. This class generalizes the extended Jacobi polynomials and their particular cases such as the polynomials of Brafman, Jacobi, Chebyshev, and Legendre. It is further shown that this pair also gives rise to the matrix forms of the Wilson polynomials and the Racah polynomials. For these polynomials, the generating matrix function relations as well as the matrix summation formulas are deduced from their respective inverse pairs. Certain inverse pairs belonging to the Gould classes and the Legendre-Chebyshev classes due to John Riordan [An Introduction to Combinatorial Identities, Wiley, 1968] are also extended to matrix forms.

MSC 2010: 15A16; 15A24; 33C45; 33C99
  1. ( Communicated by Marek Balcerzak )

Acknowledgement

The authors are indebted to the referee for the valuable suggestions and indicating the corrections for the improvement of the manuscript.

References

[1] Askey, R.—Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54(319) (1985), 1–55.10.1090/memo/0319Suche in Google Scholar

[2] Brafman, F.: Some generating functions for Laguerre and Hermite polynomials, Canad. J. Math. 9 (1957), 180–187.10.4153/CJM-1957-020-1Suche in Google Scholar

[3] Constantine, A. G.—Muirhead, R.: Partial differential equations for hypergeometric functions of two argument matrix, J. Multivariate Anal. 3 (1972), 332–338.10.1016/0047-259X(72)90020-6Suche in Google Scholar

[4] Dave, B. I.—Dalbhide, M.: Gessel-Stanton's inverse series and a system of q-polynomials, Bull. Sci. Math. 138 (2014), 323–334.10.1016/j.bulsci.2013.03.006Suche in Google Scholar

[5] Defez, E.—Hervás, A.—Law, A.—Villanueva-Oller, J.—Villanueva, R.: Progressive transmission of images: PC-based computations, using orthogonal matrix polynomials, Math. Comput. Modelling 32 (2000), 1125–1140.10.1016/S0895-7177(00)00195-3Suche in Google Scholar

[6] Defez, E.—Jódar, L.: Jacobi matrix differential equation, polynomial solutions, and their properties, Comput. Math. Appl. 48 (2004), 789–803.10.1016/j.camwa.2004.01.011Suche in Google Scholar

[7] Dunford, N.—Schwartz, J.: Linear Operators, part I, General theory, vol. I., Interscience Publishers, INC., New York, 1957.Suche in Google Scholar

[8] Gould, H. W.: Some generalizations of Vandermonde's convolution, Amer. Math. Monthly 63(2) (1956), 84–91.10.1080/00029890.1956.11988763Suche in Google Scholar

[9] Gould, H. W.: A new convolution formula and some new orthogonal relations for inversion of series, Duke Math. J. 29(3) (1962), 393–404.10.1215/S0012-7094-62-02938-1Suche in Google Scholar

[10] Gould, H. W.: A new series transform with applications to Bessel, Legendre, and Tchebycheff polynomials, Duke Math. J. 31(2) (1964), 325–334.10.1215/S0012-7094-64-03131-XSuche in Google Scholar

[11] Gould, H. W.: Inverse series relations and other expansions involving Humbert polynomials, Duke Math. J. 32(4) (1965), 697–711.10.1215/S0012-7094-65-03275-8Suche in Google Scholar

[12] Gould, H. W.—Hsu, L. C.: Some new inverse series relations, Duke Math. J. 40(4) (1973), 885–891.10.1215/S0012-7094-73-04082-9Suche in Google Scholar

[13] Hille, H.: Lectures on Ordinary Differential Equations, Addison-Wesley, New York, 1969.Suche in Google Scholar

[14] James, A. T.: Special Functions of Matrix and Single Argument in Statistics. In: Theory and Applications of Special Functions, Academic Press, New York, 1975.10.1016/B978-0-12-064850-4.50016-1Suche in Google Scholar

[15] Jódar, L.—Company, R.—Navarro, E.: Laguerre matrix polynomials and systems of second-order differential equations, Appl. Numer. Math. 15 (1994), 53–63.10.1016/0168-9274(94)00012-3Suche in Google Scholar

[16] Jódar, L.—Company, R.—Ponsoda, E.: Orthogonal matrix polynomials and systems of second order differential equations, Diff. Equations and Dynamic Syst. 3(3) (1995), 269–228.Suche in Google Scholar

[17] Jódar, L.—Cortés, J. C.: On the hypergeometric matrix function, J. Comput. Appl. Math. 99 (1998), 205–217.10.1016/S0377-0427(98)00158-7Suche in Google Scholar

[18] Jódar, L.—Defez, E.—Ponsoda, E.: Matrix quadrature integration and orthogonal matrix polynomials, Congr. Numer. 106 (1995), 141–153.Suche in Google Scholar

[19] Jódar, L.—Cortés, J. C.: Some properties of Gamma and Beta matrix functions, Appl. Math. Lett. 11(1) (1998), 89–93.10.1016/S0893-9659(97)00139-0Suche in Google Scholar

[20] Khatri, C. G.: Partial differential equations for hypergeometric functions of two argument matrices, J. Multivariate Anal. 12(2) (1972), 201–207.10.1016/0047-259X(72)90027-9Suche in Google Scholar

[21] Koelink E.—Walter Van Assche (Eds.): Orthogonal Polynomials and Special Functions, Springer, 2003.10.1007/b12166Suche in Google Scholar

[22] Panda, R.: On a new clas of polynomials, Glasgow Math. J. 18 (1977), 105–108.10.1017/S0017089500003116Suche in Google Scholar

[23] Pathan, M.—Bin-Saad Maged, G.—Al-Sarahi, F.: On mathrix polynomial associated with Humbert polynomial, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 21(3) (2014), 207–218.10.7468/jksmeb.2014.21.3.207Suche in Google Scholar

[24] Rainville, E. D.: Special Functions, Mac Millan Co., New York, 1960.Suche in Google Scholar

[25] Riordan, J.: An Introduction to Combinatorial Identities, Wiley, New York – London – Sydney, 1968.Suche in Google Scholar

[26] Sanjhira, R.—Dave, B.I.: Generalized Konhauser matrix polynomial and its properties, Math. Student 87(3–4) (2018), 109–120.Suche in Google Scholar

[27] Sanjhira, R.—Nathwani, B. V.—Dave, B. I.: Generalized Mittag-Leffler matrix function and associated matrix polynomials, J. Indian Math. Soc. 86(1–2) (2019), 161–178.Suche in Google Scholar

[28] Sanjhira, R.: A general inverse matrix series relation and associated polynomials – II, Math. Slovaca 71(2) (2021), 301–316.10.1515/ms-2017-0469Suche in Google Scholar

[29] Shehata, A.: A new kind of Legendre matrix polynomials, Gazi University Journal of Science 29(2) (2016), 435–457.Suche in Google Scholar

[30] Shehata, A.: Some relation on Konhauser matrix polynomial, Miskolc Math. Notes 17(1) (2016), 605–633.10.18514/MMN.2016.1126Suche in Google Scholar

[31] Srivastava, H. M.: The Weyl fractional integral of general class of polynomials, Boll. Un. Mat. Ital. 6(2B) (1983), 219–228.Suche in Google Scholar

Received: 2021-05-07
Accepted: 2021-10-10
Published Online: 2022-12-04
Published in Print: 2022-12-16

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 27.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0100/html
Button zum nach oben scrollen