Startseite Mathematik Kalmbach measurability In d0-algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Kalmbach measurability In d0-algebras

  • Anna Avallone und Paolo Vitolo EMAIL logo
Veröffentlicht/Copyright: 4. Dezember 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We introduce the notion of ∧-projection in order to extend to d0-algebras the concept of Kalmbach measurable elements with respect to an outer measure μ.

We prove, in case μ is faithful, that Kalmbach measurable ∧-projections are quasi-central, thus generalizing a result known for orthomodular lattices, and recently extended to D-lattices.

MSC 2010: 03G25; 28A12; 06A12; 06F35
  1. (Communicated by Mirko Navara)

References

[1] Avallone, A.—Barbieri, G.—Vitolo, P.: Hahn decomposition of modular measures and applications, Ann. Polon. Math. Series I: Comment. Math. 43 (2003), 149–168.Suche in Google Scholar

[2] Avallone, A.—Barbieri, G.—Vitolo, P.—Weber. H.: Decomposition of effect algebras and the Hammer-Sobczyk theorem, Algebra Universalis 60(1) (2009), 1–18.10.1007/s00012-008-2083-zSuche in Google Scholar

[3] Avallone, A.—De Simone, A.—Vitolo, P.: Effect algebras and extensions of measures, Boll. Unione Mat. Ital. 9(2) (2006), 423–444.Suche in Google Scholar

[4] Avallone, A.—Vitolo, P.: Decomposition and control theorems on effect algebras, Sci. Math. Jpn. 58(1) (2003), 1–14.Suche in Google Scholar

[5] Avallone, A.—Vitolo, P.: Lattice uniformities on effect algebras, Internat. J. Theoret. Phys. 44(7) (2005), 793–806.10.1007/s10773-005-7057-8Suche in Google Scholar

[6] Avallone, A.—Vitolo, P.: Lyapunov decomposition of measures on effect algebras, Sci. Math. Jpn. 69(1) (2009), 79–87.Suche in Google Scholar

[7] Avallone, A.—Vitolo, P.: Hahn decomposition in d0-algebras, Soft Comput. 23(22) (2019), 11373–11388.10.1007/s00500-019-04049-5Suche in Google Scholar

[8] Avallone, A.—Vitolo, P.: Lyapunov decomposition in d0-algebras, Rend. Circ. Mat. Palermo Ser. 2 69 (2020), 837–859.10.1007/s12215-019-00440-1Suche in Google Scholar

[9] Avallone, A.—Vitolo, P.: The center of a d0-algebra, Rep. Math. Phys. 86(1) (2020), 63–78.10.1016/S0034-4877(20)30057-4Suche in Google Scholar

[10] Avallone, A.—Vitolo, P.: Kalmbach measurability in D-Lattices, Soft Comput. 26 (2022), 13349–13355.10.1007/s00500-022-07512-ySuche in Google Scholar

[11] Bennet, M. K.—Foulis, D. J: Effect algebras and unsharp quantum logics, Found. Phys. 24(10) (1994), 1331–1352.10.1007/BF02283036Suche in Google Scholar

[12] Barbieri, G.—Weber, H.: Measures on Clans and on MV-algebras. In: Handbook of Measure Theory, II, North-Holland, Amsterdam, 2002, pp. 911–945.10.1016/B978-044450263-6/50023-3Suche in Google Scholar

[13] Chajda, I.—Halaš, R.—Kühr, J.: Many-valued quantum algebras, Algebra Universalis 60(1) (2009), 63–90.10.1007/s00012-008-2086-9Suche in Google Scholar

[14] Chovanec, F.—Kôpka, F.: Boolean D-posets, Tatra Mt. Math. Publ. 10 (1997), 183–197.Suche in Google Scholar

[15] Constantinescu, C.: Some properties of spaces of measures, Atti Sem. Mat. Fis. Univ. Modena 35(suppl.) (1989), 286.Suche in Google Scholar

[16] d'Andrea, A. B.—de Lucia, P.—Maitland Wright, J. D.: %upravit mena On Kalmbach measurability, Appl. Math. 39(6) (1994), 445–447.10.21136/AM.1994.134270Suche in Google Scholar

[17] Dvurečenskij, A.—Graziano, M. G.: Remarks on representations of minimal clans, %upravit konferencia Quantum structures, II (Liptovský Ján 1998), Tatra Mt. Math. Publ. 15 (1998), 31–53.Suche in Google Scholar

[18] Dvurečenskij, A.—Graziano, M. G.: On representations of commutative BCK-algebras, Demonstr. Math. 32(2) (1999), 227–246.10.1515/dema-1999-0202Suche in Google Scholar

[19] Dvurečenskij, A.—Pulmannová, S.: New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht, 2000.10.1007/978-94-017-2422-7Suche in Google Scholar

[20] Jenča, G.—Riečanová, Z.: On sharp elements in lattice ordered effect algebras, BUSEFAL 80 (1999), 24–29.Suche in Google Scholar

[21] Kalmbach, G.: Quantum measure spaces, Found. Phys. 20(7) (1990), 801–821.10.1007/978-94-017-2827-0Suche in Google Scholar

[22] Riečanová, Z.: Compatibility and central elements in effect algebras, Tatra Mt. Math. Publ. (1999), 151–158.Suche in Google Scholar

[23] Rosa, M.—Vitolo, P.: Blocks and compatibility in d0-algebras, Algebra Universalis 78(4) (2017), 489–513.10.1007/s00012-017-0469-5Suche in Google Scholar

[24] Rosa, M.—Vitolo, P.: Topologies and uniformities on d0-algebras, Math. Slovaca 67(6) (2017), 1301–1322.10.1515/ms-2017-0053Suche in Google Scholar

[25] Rosa, M.—Vitolo, P.: Measures and submeasures on d0-algebras, Ric. Mat. 67 (2018), 373–386.10.1007/s11587-018-0379-7Suche in Google Scholar

[26] Schmidt, K. D.: Minimal clans: A class of ordered partial semigroups including boolean rings and lattice-ordered groups. In: Semigroups. Theory and Applications (Proceedings of a Conference held in Oberwolfach, 1986), Lecture Notes in Math. 1320, Springer, Berlin, 1988, pp. 300–341.10.1007/BFb0083442Suche in Google Scholar

[27] Schmidt, K. D.: Jordan Decompositions of Generalized Vector Measures. Pitman Research Notes in Mathematics Series 214, Longman Scientific & Technical, Harlow, 1989.Suche in Google Scholar

[28] Vitolo, P.: A generalization of set-difference, Math. Slovaca 61(6) (2011), 835–850.10.2478/s12175-011-0051-0Suche in Google Scholar

[29] Weber, H.: An abstraction of clans of fuzzy sets: Ric. Mat. 46(2) (1997), 457–472.Suche in Google Scholar

[30] Weber, H.: On modular functions, Funct. Approx. Comment. Math. 24 (1996), 35–52.Suche in Google Scholar

[31] Wyler, O.: Clans, Compos. Math. 17 (1965), 172–189.10.1515/zpt-1965-0505Suche in Google Scholar

Received: 2021-10-19
Accepted: 2022-09-27
Published Online: 2022-12-04
Published in Print: 2022-12-16

© 2022 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2022-0095/pdf
Button zum nach oben scrollen