Startseite Mathematik Density of sets with missing differences and applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Density of sets with missing differences and applications

  • Ram Krishna Pandey EMAIL logo und Neha Rai
Veröffentlicht/Copyright: 10. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For a given set M of positive integers, a well-known problem of Motzkin asks to determine the maximal asymptotic density of M-sets, denoted by μ(M), where an M-set is a set of non-negative integers in which no two elements differ by an element in M. In 1973, Cantor and Gordon find μ(M) for |M| ≤ 2. Partial results are known in the case |M| ≥ 3 including some results in the case when M is an infinite set. Motivated by some 3 and 4-element families already discussed by Liu and Zhu in 2004, we study μ(M) for two families namely, M = {a, b,a + b, n(a + b)} and M = {a, b, ba, n(ba)}. For both of these families, we find some exact values and some bounds on μ(M). This number theory problem is also related to various types of coloring problems of the distance graphs generated by M. So, as an application, we also study these coloring parameters associated with these families.

  1. (Communicated by István Gaál)

Acknowledgement

The authors are very much thankful to the anonymous referees for their useful comments to make the paper better.

References

[1] Barajas, J.—Serra, O.: Distance graphs with maximum chromatic number, Disc. Math. 308 (2008), 1355–1365.10.1016/j.disc.2007.07.061Suche in Google Scholar

[2] Cantor, D. G.—Gordon, B.: Sequences of integers with missing differences, J. Combin. Theory Ser. A 14 (1973), 281–287.10.1016/0097-3165(73)90003-4Suche in Google Scholar

[3] Chang, G.—Liu, D. D.-F.—Zhu, X.: Distance graphs and T-colorings, J. Combin. Theory Ser. B75 (1999), 159–169.10.1006/jctb.1998.1881Suche in Google Scholar

[4] Collister, D.—Liu, D. D.-F.: Study of κ(D) for D = {2, 3, x, y}. In: Combinatorial Algorithms. Lecture Notes in Comput. Sci. 8986, Springer, Berlin, 2015, pp. 250–261.10.1007/978-3-319-19315-1_22Suche in Google Scholar

[5] Cusick, T. W.: View-obstruction problems in n-dimensional geometry, J. Combin. Theory Ser. A 16 (1974), 1–11.10.1016/0097-3165(74)90066-1Suche in Google Scholar

[6] Griggs, J. R.—Liu, D. D.-F.: The channel assignment problem for mutually adjacent sites, J. Combin. Theory Ser. A 68 (1994), 169–183.10.1016/0097-3165(94)90096-5Suche in Google Scholar

[7] Gupta, S.: Sets of integers with missing differences, J. Combin. Theory Ser. A 89 (2000), 55–69.10.1006/jcta.1999.3003Suche in Google Scholar

[8] Gupta, S.—Tripathi, A.: Density of M-sets in arithmetic progression, Acta Arith. 89 (1999), 255–257.10.4064/aa-89-3-255-257Suche in Google Scholar

[9] Haralambis, N. M.: Sets of integers with missing differences, J. Combin. Theory Ser. A 23 (1977), 22–23.10.1016/0097-3165(77)90076-0Suche in Google Scholar

[10] Liu, D. D.-F.: From rainbow to the lonely runner: A survey on coloring parameters of distance graphs, Taiwanese J. Math. 12 (2008), 851–871.10.11650/twjm/1500404981Suche in Google Scholar

[11] Liu, D. D.-F.—Sutedja, A.: Chromatic number of distance graphs generated by the sets {2, 3, x, y}, J. Comb. Optim. 25 (2013), 680–693.10.1007/s10878-012-9509-4Suche in Google Scholar

[12] Liu, D. D.-F.—Zhu, X.: Fractional chromatic number for distance graphs with large clique size, J. Graph Theory 47 (2004), 129–146.10.1002/jgt.20020Suche in Google Scholar

[13] Liu, D. D.-F.—Zhu, X.: Fractional chromatic number of distance graphs generated by two-interval sets, European J. Combin. 29 (2008), 1733–1742.10.1016/j.ejc.2007.09.007Suche in Google Scholar

[14] Motzkin, T. S.: Problems collection, unpublished.Suche in Google Scholar

[15] Pandey, R. K.—Tripathi, A.: A note on the density of M-sets in geometric sequence, Ars Comb. CXIX (2015), 221–224.Suche in Google Scholar

[16] Pandey, R. K.—Tripathi, A.: A note on a problem of Motzkin regarding density of integral sets with missing differences, J. Integer Sequences 14 (2011), Art. ID 11.6.3.Suche in Google Scholar

[17] Pandey, R. K.—Tripathi, A.: On the density of integral sets with missing differences from sets related to arithmetic progressions, J. Number Theory 131 (2011), 634–647.10.1016/j.jnt.2010.09.013Suche in Google Scholar

[18] Rabinowitz, J. H.—Proulx, V. K.: An asymptotic approach to the channel assignment problem, SIAM J. Alg. Disc. Methods 6 (1985), 507–518.10.1137/0606050Suche in Google Scholar

[19] Srivastava, A.—Pandey, R. K.—Prakash, O.: On the maximal density of integral sets whose differences avoiding the weighted Fibonacci numbers, Integers 17 (2017), A48.Suche in Google Scholar

[20] Srivastava, A.—Pandey, R. K.—Prakash, O.: Motzkin’s maximal density and related chromatic numbers, Unif. Distrib. Theory 13 (2018), 27–45.10.1515/udt-2018-0002Suche in Google Scholar

[21] Tao, T.: Some remarks on the lonely runner conjecture, Contrib. Discrete Math. 13 (2018), 1–31.Suche in Google Scholar

[22] Wills, J. M.: Zwei Sätze über inhomogene diophantische Approximation von Irrationalzahlen, Monatsh. Math. 71 (1967), 263–269.10.1007/BF01298332Suche in Google Scholar

[23] Zhu, X.: Circular chromatic number: A survey, Disc. Math. 229 (2001), 371–410.10.1016/S0012-365X(00)00217-XSuche in Google Scholar

Received: 2020-02-15
Accepted: 2020-08-31
Published Online: 2021-06-10
Published in Print: 2021-06-25

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0006/pdf
Button zum nach oben scrollen