Startseite Mathematik Representation of bifinite domains by BF-closure spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Representation of bifinite domains by BF-closure spaces

  • Lingjuan Yao und Qingguo Li EMAIL logo
Veröffentlicht/Copyright: 8. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we propose the notion of BF-closure spaces as concrete representation of bifinite domains. We prove that every bifinite domain can be obtained as the set of F-closed sets of some BF-closure space under set inclusion. Furthermore, we obtain that the category of bifinite domains and Scott-continuous functions is equivalent to that of BF-closure spaces and F-morphisms.


This work is supported by National Nature Science Foundation of China (No. 11771134).


  1. (Communicated by Miroslav Ploščica)

Acknowledgement

We would like to express our deep gratitude to the referee for his/her invaluable comments which have improved the quality of this paper.

References

[1] Awodey, S.: Category Theory, Oxford University Press, 2010.Suche in Google Scholar

[2] Birkhoff, G.: Rings of sets, Duke Math. J. 3 (1937), 443–454.10.1007/978-1-4612-5373-0_23Suche in Google Scholar

[3] Büchi, J. R.: Representation of complete lattices by sets, Port. Math. 11 (1952), 103–119.10.1007/978-1-4613-8928-6_7Suche in Google Scholar

[4] Davey, B. A.—Priestley, H. A.: Introduction to Lattices and Order, Cambridge University Press, Cambridge, 2002.10.1017/CBO9780511809088Suche in Google Scholar

[5] Erné, M.: Lattice representations for categories of closure spaces, Categorical Topology (Toledo, OH) 5 (1984), 197–222.Suche in Google Scholar

[6] Edelman, P. H.: Meet-distributive lattices and the anti-exchange closure, Algebra Universalis 10 (1980), 290–299.10.1007/BF02482912Suche in Google Scholar

[7] Gierz, G.—Hofmann, K. H.—Keimel, K.—Lawson, J. D.—Mislove, M.—Scott, D. S.: Continuous Lattices and Domains. EncyclopediaMath. Appl. 93, Cambridge University Press, 2003.10.1017/CBO9780511542725Suche in Google Scholar

[8] Guo, L.—Li, Q: The categorical equivalence between algebraic domains and F-augmented closure spaces, Order 32 (2015), 101–116.10.1007/s11083-014-9318-8Suche in Google Scholar

[9] Jung, A.: Cartesian Closed Categories of Domains, CWI Tracts, vol. 66, Centrum voor Wiskunde en Informatica, Amsterdam, 1989, 107 pp.Suche in Google Scholar

[10] Jung, A.: The classification of continuous domains. In: Proceedings, Fifth Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, 1990, pp. 35–40.10.1109/LICS.1990.113731Suche in Google Scholar

[11] Jung, A.: Cartesian closed categories of algebraic cpos, Theoret. Comput. Sci. 70 (1990), 233–250.10.1016/0304-3975(90)90124-ZSuche in Google Scholar

[12] Raney, G. N.: Completely distributive complete lattices, Proc. Amer. Math. Soc. 3 (1952), 677–680.10.1090/S0002-9939-1952-0052392-3Suche in Google Scholar

[13] Stone, M. H.: The theory of representations for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), 37–111.10.1090/S0002-9947-1936-1501865-8Suche in Google Scholar

Received: 2019-08-01
Accepted: 2020-09-29
Published Online: 2021-06-08
Published in Print: 2021-06-25

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0004/html
Button zum nach oben scrollen