Startseite Mathematik Properties of implication in effect algebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Properties of implication in effect algebras

  • Ivan Chajda und Helmut Länger EMAIL logo
Veröffentlicht/Copyright: 8. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Effect algebras form a formal algebraic description of the structure of the so-called effects in a Hilbert space which serve as an event-state space for effects in quantum mechanics. This is why effect algebras are considered as logics of quantum mechanics, more precisely as an algebraic semantics of these logics. Because every productive logic is equipped with implication, we introduce here such a concept and demonstrate its properties. In particular, we show that this implication is connected with conjunction via a certain “unsharp” residuation which is formulated on the basis of a strict unsharp residuated poset. Though this structure is rather complicated, it can be converted back into an effect algebra and hence it is sound. Further, we study the Modus Ponens rule for this implication by means of so-called deductive systems and finally we study the contraposition law.

  1. (Communicated by Mirko Navara)

Acknowledgement

The authors thank the anonymous referee for his/her valuable suggestions which improved the quality of the paper.

References

[1] Chajda, I.—Halaš, R.: Effect algebras are conditionally residuated structures, Soft Comput. 15 (2011), 1383–1387.10.1007/s00500-010-0677-9Suche in Google Scholar

[2] Chajda, I.—Kühr, J.—Länger, H.: Relatively residuated lattices and posets, Math. Slovaca 70 (2020), 239–250.10.1515/ms-2017-0347Suche in Google Scholar

[3] Chajda, I.—Länger, H.: Residuation in lattice effect algebras, Fuzzy Sets Systems 397 (2020), 168–178.10.1016/j.fss.2019.11.008Suche in Google Scholar

[4] Chajda, I.—Länger, H.: Inexact residuation in effect algebras, J. Multiple-Valued Logic Soft Comput., to appear; http://arxiv.org/abs/1907.02738.Suche in Google Scholar

[5] Czelakowski, J.: Protoalgebraic Logics, Kluwer, Dordrecht 2001.10.1007/978-94-017-2807-2Suche in Google Scholar

[6] Dvurečenskij, A.—Pulmannová, S.: New Trends in Quantum Structures, Kluwer, Dordrecht 2000.10.1007/978-94-017-2422-7Suche in Google Scholar

[7] Dvurečenskij, A.—Vetterlein, T.: Pseudoeffect algebras. I. Basic properties, Internat. J. Theoret. Phys. 40 (2001), 685–701.10.1023/A:1004192715509Suche in Google Scholar

[8] Foulis, D. J.—Bennett, M. K.: Effect algebras and unsharp quantum logics, Found. Phys. 24 (1994), 1331–1352.10.1007/BF02283036Suche in Google Scholar

Received: 2019-08-16
Accepted: 2020-10-16
Published Online: 2021-06-08
Published in Print: 2021-06-25

© 2021 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2021-0001/pdf
Button zum nach oben scrollen