Startseite Mathematik Some relative normality properties in locales
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some relative normality properties in locales

  • Themba Dube EMAIL logo , Ali Akbar Estaji und Maryam Robat Sarpoushi
Veröffentlicht/Copyright: 24. Juli 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study relative normality properties in locales. We identify localic maps that preserve and ones that reflect various relative normality properties.


Dube was supported by the National Research Foundation of South Africa under Grant No. 113829.


  1. (Communicated by Aleš Pultr)

References

[1] Archangel’skii, A. V.: Relative topological properties and relative topological spaces, Topology Appl. 70 (1996), 1325–1346.10.1016/0166-8641(95)00086-0Suche in Google Scholar

[2] Archangel’skii, A. V.—Genedi, H. H. M.: Beginnings of the theory of relative properties. In: General Topology. Spaces and Mappings, MGU, Moscow, 1989, pp. 3–48.Suche in Google Scholar

[3] Aull, C. E.: Embeddings extending various types of disjoint sets, Rocky Mountain J. Math. 14 (1984), 319–330.10.1216/RMJ-1984-14-2-319Suche in Google Scholar

[4] Ball, R. N.—Walters-Wayland, J.: C- and C-quotients in pointfree topology, Dissertationes Math. (Rozprawy Mat.) 412 (2002), 62 pp.10.4064/dm412-0-1Suche in Google Scholar

[5] Banaschewski, B.—Dube, T.—Gilmour, C.—Walters-Wayland, J.: Oz in pointfree topology, Quaest. Math. 32 (2009), 215–227.10.2989/QM.2009.32.2.4.797Suche in Google Scholar

[6] Clementino, M. M.—Picado, J.—Pultr, A.: The other closure, Appl. Categ. Structures 26 (2018), 891–906.10.1007/s10485-018-9516-4Suche in Google Scholar

[7] Dube, T.—Robat Sarpoushi, M.: On densely normal locales, Topology Appl. 275 (2020), 107015.10.1016/j.topol.2019.107015Suche in Google Scholar

[8] Dube, T.—Walters-Wayland, J.: Coz-onto frame maps and some applications, Appl. Categ. Structures 15 (2007), 119–133.10.1007/s10485-006-9022-ySuche in Google Scholar

[9] Ferreria, M. J.—Gutiérrez García, J.—Picado, J.: Completely normal frames and real-valued functions, Topology Appl. 156 (2009), 2932–2941.10.1016/j.topol.2008.12.042Suche in Google Scholar

[10] Gutiérrez García, J.—Kubiak, T.—Picado, J.: On hereditary properties of extremally disconnected frames and normal frames, Topology Appl., to appear.10.1016/j.topol.2019.106978Suche in Google Scholar

[11] Gutiérrez García, J.—Picado, J.: On the parallel between normality and extremal disconnectedness, J. Pure Appl. Algebra 218 (2014), 784–803.10.1016/j.jpaa.2013.10.002Suche in Google Scholar

[12] Hoshina, T.—Yamazaki, K.: Weak C-embedding and P-embedding, and product spaces, Topology Appl. 125 (2002), 233–247.10.1016/S0166-8641(01)00275-9Suche in Google Scholar

[13] Johnstone, P. T.: Stone Spaces, Cambridge Univ. Press, Cambridge, 1982.Suche in Google Scholar

[14] Picado, J.— Pultr, A.: Frames and Locales: Topology without Points. Front. Math., Birkhauser/Springer, Basel AG, Basel, 2012.10.1007/978-3-0348-0154-6Suche in Google Scholar

Received: 2019-06-17
Accepted: 2020-01-17
Published Online: 2020-07-24
Published in Print: 2020-08-26

© 2020 Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Regular papers
  2. Some relative normality properties in locales
  3. Upper bounds of some special zeros for the Rankin-Selberg L-function
  4. Factorization of polynomials over valued fields based on graded polynomials
  5. Varieties of ∗-regular rings
  6. On reverse Hölder and Minkowski inequalities
  7. Coefficient inequalities related with typically real functions
  8. Existence of wandering and periodic domain in given angular region
  9. The sharp bounds of the second and third Hankel determinants for the class 𝓢𝓛*
  10. Uniqueness problem of meromorphic mappings of a complete Kähler manifold into a projective space
  11. Long time decay of 3D-NSE in Lei-Lin-Gevrey spaces
  12. Bn-maximal operator and Bn-singular integral operators on variable exponent Lebesgue spaces
  13. 𝔻-recurrent ∗-Ricci tensor on three-dimensional real hypersurfaces in nonflat complex space forms
  14. More on closed non-vanishing ideals in CB(X)
  15. The Lindley negative-binomial distribution: Properties, estimation and applications to lifetime data
  16. Multi-opponent James functions
  17. An alternative distribution to Lindley and Power Lindley distributions with characterizations, different estimation methods and data applications
  18. A new one-parameter discrete distribution with associated regression and integer-valued autoregressive models
  19. On the bond pricing partial differential equation in a convergence model of interest rates with stochastic correlation
  20. Characterization of linear mappings on (Banach) ⋆-algebras by similar properties to derivations
Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0391/pdf
Button zum nach oben scrollen