Startseite Remarks on b-Metric and metric-preserving functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Remarks on b-Metric and metric-preserving functions

  • Tammatada Khemaratchatakumthorn und Prapanpong Pongsriiam EMAIL logo
Veröffentlicht/Copyright: 20. Oktober 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We introduce new classes of functions related to metric-preserving functions and b-metrics. We investigate their properties and compare them to those of metric-preserving functions.

  1. Communicated by Ján Borsík

Acknowledgement

We are very grateful to both referees for giving us many suggestions which improve the quality of this article. The first author receives financial support from Faculty of Science Silpakorn University, contract number SRF-PRG-2559-01. The second author currently receives financial support jointly from The Thailand Research Fund and Faculty of Science Silpakorn University, grant number RSA5980040.

References

[1] BAKHTIN, I. A.: The contraction mapping principle in quasimetric spaces, Funct. Anal. 30 (1989), 26–37.Suche in Google Scholar

[2] BORSÍK, J.—DOBOŠ, J.: On metric preserving functions, Real Anal. Exchange 13 (1987–88), 285–293.10.2307/44151879Suche in Google Scholar

[3] BORSÍK, J.—DOBOŠ, J.: Functions whose composition with every metric is a metric, Math. Slovaca 31 (1981), 3–12.Suche in Google Scholar

[4] CORAZZA, P.: Introduction to metric-preserving functions, Amer. Math. Monthly 106(4) (1999), 309–323.10.1080/00029890.1999.12005048Suche in Google Scholar

[5] DAS, P. P.: Metricity preserving transforms, Pattern Recognition Letters 10 (1989), 73–76.10.1016/0167-8655(89)90069-XSuche in Google Scholar

[6] DOBOŠ, J.: Metric Preserving Functions, Online Lecture Notes available at http://web.science.upjs.sk/jozefdobos/wp-content/uploads/2012/03/mpf1.pdfSuche in Google Scholar

[7] DOBOŠ, J.: On modification of the Euclidean metric on reals, Tatra Mt. Math. Publ. 8 (1996), 51–54.Suche in Google Scholar

[8] DOBOŠ, J.: A survey of metric-preserving functions, Questions Answers Gen. Topology 13 (1995), 129–133.Suche in Google Scholar

[9] DOBOŠ, J.—PIOTROWSKI, Z.: When distance means money, Internat. J. Math. Ed. Sci. Tech. 28 (1997), 513–518.10.1080/0020739970280405Suche in Google Scholar

[10] DOBOŠ, J.—PIOTROWSKI, Z.: A note on metric-preserving functions, Int. J. Math. Math. Sci. 19 (1996), 199–200.10.1155/S0161171296000282Suche in Google Scholar

[11] DOBOŠ, J.—PIOTROWSKI, Z.: Some remarks on metric-preserving functions, Real Anal. Exchange 19 (1993–94), 317–320.10.2307/44153846Suche in Google Scholar

[12] KELLY, J.: General Topology, Springer-Verlag, 1955.Suche in Google Scholar

[13] KIRK, W.A.—SHAHZAD, N.: Fixed Point Theory in Distance Spaces, Springer International Publishing Switzerland, 2014.10.1007/978-3-319-10927-5Suche in Google Scholar

[14] PETRUŞEL, A.—RUS, I. A.—ŞERBAN, M. A.: The role of equivalent metrics in fixed point theory, Topol. Methods Nonlinear Anal. 41(1), (2013), 85–112.10.1186/1687-1812-2013-218Suche in Google Scholar

[15] PIOTROWSKI, Z.—VALLIN, R. W.: Functions which preserve Lebesgue spaces, Comment. Math. Prace Mat. 43(2) (2003), 249–255.Suche in Google Scholar

[16] POKORNÝ, I.: Some remarks on metric-preserving functions, Tatra Mt. Math. Publ. 2 (1993), 65–68.Suche in Google Scholar

[17] PONGSRIIAM, P.—TERMWUTTIPONG, I.: On metric-preserving functions and fixed point theorems, Fixed Point Theory Appl. (2014), 2014:179, 14 pp.10.1186/1687-1812-2014-179Suche in Google Scholar

[18] PONGSRIIAM, P.—TERMWUTTIPONG, I.: Remarks on ultrametrics and metric-preserving functions, Abstr. Appl. Anal. (2014), Article ID 163258, 9 pp.10.1155/2014/163258Suche in Google Scholar

[19] SREENIVASAN, T. K.: Some properties of distance functions, J. Indian. Math. Soc. (N.S.) 11 (1947), 38–43.Suche in Google Scholar

[20] TERMWUTTIPONG, I.—OUDKAM, P.: Total boundedness, completeness and uniform limits of metric-preserving functions, Ital. J. Pure Appl. Math. 18 (2005), 187–196.Suche in Google Scholar

[21] VALLIN, R. W.: Continuity and differentiability aspects of metric preserving functions, Real Anal. Exchange 25(2) (1999/2000), 849–868.10.2307/44154040Suche in Google Scholar

Received: 2017-02-08
Accepted: 2017-07-02
Published Online: 2018-10-20
Published in Print: 2018-10-25

© 2018 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 26.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0163/html
Button zum nach oben scrollen