Startseite Mathematik Convergence of Series on Large Set of Indices
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Convergence of Series on Large Set of Indices

  • Szymon Głąb EMAIL logo und Michał Olczyk
Veröffentlicht/Copyright: 9. Dezember 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We prove that if an = ∞ and (an) is non-decreasing, then an = ∞ for any set A ⊂ ℕ of positive lower density. We introduce a Cauchy-like definition of I-convergence of series. We prove that the I-convergence of series coincides with the convergence on large set of indexes if and only if I is a P-ideal. It turns out that I-convergence of series an implies I-convergence of (an) to zero. The converse implication does not hold for analytic P-ideals and it is independent of ZFC that there is I ideal of naturals for which I-convergence of (an) to zero implies I-convergence of series an = ∞ for every sequence (an).

References

[1] BALCERZAK, M.-DEMS, K.-KOMISARSKI, A.: Statistical convergence and ideal convergence for sequences of functions, J. Math. Anal. Appl. 328 (2007), 715-729. 10.1016/j.jmaa.2006.05.040Suche in Google Scholar

[2] BARTOSZEWICZ, A.-GŁA,B, S.-WACHOWICZ, A.: Remarks on ideal boundedness, convergence and variation of sequences, J. Math. Anal. Appl. 375 (2011), 431-435.10.1016/j.jmaa.2010.09.023Suche in Google Scholar

[3] BARTOSZYŃSKI, T.-JUDAH, H.: Set Theory. On the Structure of the Real Line, A K Peters, Ltd., Wellesley, MA, 1995.Suche in Google Scholar

[4] ČERVEŇANSK´Y, J.-ŠALÁT, T.-TOMA, V.: Remarks on statistical and I-convergence of series, Math. Bohem. 130 (2005), 177-184.10.21136/MB.2005.134134Suche in Google Scholar

[5] DINDOŠ, M.-ŠAL´AT, T.-TOMA, V.: Statistical convergence of infinite series, Czechoslovak Math. J. 53(128) (2003), 989-1000.10.1023/B:CMAJ.0000024535.89828.e8Suche in Google Scholar

[6] FAISANT, A.-GREKOS, G.-TOMA, V.: On the statistical variation of sequences, J. Math. Anal. Appl. 306 (2005), 432-439.10.1016/j.jmaa.2005.01.002Suche in Google Scholar

[7] FILIPÓW, R.-MRO˙ZEK, N.-RECŁAW, I.-SZUCA, P.: Ideal convergence of bounded sequences, J. Symbolic Logic 72 (2007), 501-512.10.2178/jsl/1185803621Suche in Google Scholar

[8] FILIPÓW, R.-MROZ˙ EK, N.-SZUCA, P.: Uniform density u and Iu-convergence on a big set, Math. Commun. 16 (2011), 125-130.Suche in Google Scholar

[9] FILIPÓW, R.-SZUCA, P.: On some questions of Drewnowski and Łuczak concerning submeasures on N, J. Math. Anal. Appl. 371 (2010), 655-660.10.1016/j.jmaa.2010.05.068Suche in Google Scholar

[10] FILIPÓW, R.-SZUCA, P.: Density versions of Schur’s theorem for ideals generated by submeasures, J. Combin. Theory Ser. A 117 (2010), 943-956.10.1016/j.jcta.2009.12.005Suche in Google Scholar

[11] HALBEISEN, L. J.: Combinatorial Set Theory. With a Gentle Introduction to Forcing. Springer Monogr. Math., Springer-Verlag, London, 2012.10.1007/978-1-4471-2173-2Suche in Google Scholar

[12] JASIŃSKI, J.-RECŁAW, I.: On spaces with the ideal convergence property, Colloq. Math. 111 (2008), 43-5010.4064/cm111-1-4Suche in Google Scholar

[13] JUDAH, H.-SHELAH, S.: Q-sets: Sierpi´nski sets, and rapid filters, Proc. Amer. Math. Soc. 111 (1991), 821-832.Suche in Google Scholar

[14] KOSTYRKO, P.-ŠALÁT, T.-WILCZYŃSKI,W.: I-convergence, Real Anal. Exchange 26 (2000/01), 669-685.10.2307/44154069Suche in Google Scholar

[15] MROZĖK, N.: Ideal version of Egorov’s theorem for analytic P-ideals, J. Math. Anal. Appl. 349 (2009), 452-458.10.1016/j.jmaa.2008.08.032Suche in Google Scholar

[16] POWELL, B.J.-ŠALÁT, T.: Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers, Publ.Inst. Math. N.S. 50(64) (1991), 60-70.Suche in Google Scholar

[17] ŠALÁT, T.: On subseries, Math. Z. 85 (1964), 209-225.10.1007/BF01112142Suche in Google Scholar

[18] SOLECKI, S.: Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), 51-72. 10.1016/S0168-0072(98)00051-7Suche in Google Scholar

Received: 2012-3-3
Accepted: 2012-10-18
Published Online: 2015-12-9
Published in Print: 2015-10-1

Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Finite Mixed Sums wih Harmonic Terms
  2. Packing of ℝ2 by Crosses
  3. On the Integrality of the Elementary Symmetric Functions of 1, 1/3, . . . , 1/(2n − 1)
  4. Generalized Derivations as a Generalization of Jordan Homomorphisms Acting on Lie Ideals and Right Ideals
  5. Generalized Derivations on Lie Ideals and Power Values on Prime Rings
  6. On Monoids of Injective Partial Cofinite Selfmaps
  7. Extensions of Dynamic Inequalities of Hardy’s Type on Time Scales
  8. The Controlled Convergence Theorem for the Gap-Integral
  9. The Solvability of a Nonlocal Boundary Value Problem
  10. Oscillation Criteria for Third Order Differential Equations with Functional Arguments
  11. Asymptotic Behavior of Solutions of a Nonlinear Neutral Generalized Pantograph Equation with Impulses
  12. On Null Lagrangians
  13. Principal Eigenvalues for Systems of Schrödinger Equations Defined in the whole Space with Indefinite Weights
  14. Convergence of Series on Large Set of Indices
  15. On Approximation Properties of a New Type of Bernstein-Durrmeyer Operators
  16. Representation of Extendible Bilinear Forms
  17. Spectra and Fine Spectra of Lower Triangular Double-Band Matrices as Operators on Lp (1 ≤ p < ∞)
  18. Topological Fundamental Groups and Small Generated Coverings
  19. A Relation between two Kinds of Norms for Martingales
  20. Linearization Regions in Singular Weakly Nonlinear Regression Models with Constraints
  21. Parametric Equilibrium Problems Governed by Topologically Pseudomonotone Bifunctions
  22. Identification of a Parameter in Fourth-Order Partial Differential Equations by an Equation Error Approach
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0075/html
Button zum nach oben scrollen