Startseite Mathematik On Monoids of Injective Partial Cofinite Selfmaps
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On Monoids of Injective Partial Cofinite Selfmaps

  • Oleg Gutik EMAIL logo und Dušan Repovš
Veröffentlicht/Copyright: 9. Dezember 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We study the semigroup Icfλ of injective partial cofinite selfmaps of an infinite cardinal λ. We show that Icfλ is a bisimple inverse semigroup and each chain of idempotents in Icfλ is contained in a bicyclic subsemigroup of Icfλ , we describe the Green relations on Icfλ and we prove that every non-trivial congruence on Icfλ is a group congruence. Also, we describe the structure of the quotient semigroup Icfλ /σ, where σ is the least group congruence on Icfλ.

References

[1] ANDERSEN, O.: Ein Bericht ¨uber die Struktur abstrakter Halbgruppen. PhD Thesis, Hamburg, 1952.Suche in Google Scholar

[2] ANDERSON, L. W.-HUNTER, R. P.-KOCH, R. J.: Some results on stability in semigroups, Trans. Amer. Math. Soc. 117 (1965), 521-529.10.1090/S0002-9947-1965-0171869-7Suche in Google Scholar

[3] BANAKH, T.-DIMITROVA, S.-GUTIK, O.: The Rees-Suschkiewitsch theorem for simple topological semigroups, Mat. Stud. 31 (2009), 211-218.Suche in Google Scholar

[4] BANAKH, T.-DIMITROVA, S.-GUTIK, O.: Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157 (2010), 2803-2814.10.1016/j.topol.2010.08.020Suche in Google Scholar

[5] CLIFFORD, A. H.-PRESTON, G. B.: The Algebraic Theory of Semigroups, Vol. I/II, Amer. Math. Soc., Providence, RI, 1961/1967.10.1090/surv/007.2Suche in Google Scholar

[6] DIXON, J. D.-MORTIMER, B.: Permutation Groups, Springer, Berlin, 1996.10.1007/978-1-4612-0731-3Suche in Google Scholar

[7] EBERHART, C.-SELDEN, J.: On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144 (1969), 115-126.10.1090/S0002-9947-1969-0252547-6Suche in Google Scholar

[8] GUTIK, O.-REPOVŠ, D.: On countably compact 0-simple topological inverse semigroups, Semigroup Forum 75 (2007), 464-469.10.1007/s00233-007-0706-xSuche in Google Scholar

[9] GUTIK, O.-REPOVŠ, D.: Topological monoids of monotone injective partial selfmaps of N with cofinite domain and image, Studia Sci. Math. Hungar. 48 (2011), 342-353.Suche in Google Scholar

[10] GUTIK, O.-REPOVŠ, D.: On monoids of injective partial selfmaps of integers with cofinite domains and images, Georgian Math. J. 19 (2012), 511-532.10.1515/gmj-2012-0022Suche in Google Scholar

[11] HILDEBRANT, J. A.-KOCH, R. J.: Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), 65-85.10.1007/BF02573183Suche in Google Scholar

[12] HOWIE, J. M.: Fundamentals of Semigroup Theory. London Math. Soc. Monogr. Ser. 12, Clarendon Press, Oxford, 1995.Suche in Google Scholar

[13] PETRICH, M.: Inverse Semigroups. Pure Appl. Math., John Wiley & Sons, New York, 1984.Suche in Google Scholar

[14] SCOTT, W. R.: Group Theory, Dover Publications, Inc., New York, 1987.Suche in Google Scholar

[15] SHELAH, S.-STEPRĀNS, J.: Non-trivial homeomorphisms of βN\N without the Continuum Hypothesis, Fund. Math. 132 (1989), 135-141.10.4064/fm-132-2-135-141Suche in Google Scholar

[16] SHELAH, S.-STEPRĀNS, J.: Somewhere trivial autohomeomorphisms, J. Lond. Math. Soc. (2) 49 (1994), 569-580.10.1112/jlms/49.3.569Suche in Google Scholar

[17] SHELAH, S.-STEPRĀNS, J.: Martin’s axiom is consistent with the existence of nowhere trivial automorphisms, Proc. Amer. Math. Soc. 130 (2002), 2097-2106.10.1090/S0002-9939-01-06280-3Suche in Google Scholar

[18] VELIČKOVIĆ, B.: Definable automorphisms of P(ω)/fin, Proc. Amer. Math. Soc. 96 (1986), 130-135.Suche in Google Scholar

[19] VELIČKOVIĆ, B.: Applications of the Open Coloring Axiom. In: Set Theory of the Continuum (H. Judah, W. Just, H. Woodin, eds.). Pap. Math. Sci. Res. Inst. Workshop, Berkeley, 1989, Math. Sci. Res. Inst. Publ. 26, Springer-Verlag, Berlin, 1992, pp. 137-154.Suche in Google Scholar

[20] VELIČKOVIĆ, B.: OCA and automorphisms of P(ω)/ fin, Topology Appl. 49 (1993), 1-13.10.1016/0166-8641(93)90127-YSuche in Google Scholar

[21] VAGNER, V. V.: Generalized groups, Dokl. Akad. Nauk SSSR 84 (1952), 1119-1122 (Russian). Suche in Google Scholar

Received: 2012-10-23
Accepted: 2012-11-22
Published Online: 2015-12-9
Published in Print: 2015-10-1

Mathematical Institute Slovak Academy of Sciences

Artikel in diesem Heft

  1. Finite Mixed Sums wih Harmonic Terms
  2. Packing of ℝ2 by Crosses
  3. On the Integrality of the Elementary Symmetric Functions of 1, 1/3, . . . , 1/(2n − 1)
  4. Generalized Derivations as a Generalization of Jordan Homomorphisms Acting on Lie Ideals and Right Ideals
  5. Generalized Derivations on Lie Ideals and Power Values on Prime Rings
  6. On Monoids of Injective Partial Cofinite Selfmaps
  7. Extensions of Dynamic Inequalities of Hardy’s Type on Time Scales
  8. The Controlled Convergence Theorem for the Gap-Integral
  9. The Solvability of a Nonlocal Boundary Value Problem
  10. Oscillation Criteria for Third Order Differential Equations with Functional Arguments
  11. Asymptotic Behavior of Solutions of a Nonlinear Neutral Generalized Pantograph Equation with Impulses
  12. On Null Lagrangians
  13. Principal Eigenvalues for Systems of Schrödinger Equations Defined in the whole Space with Indefinite Weights
  14. Convergence of Series on Large Set of Indices
  15. On Approximation Properties of a New Type of Bernstein-Durrmeyer Operators
  16. Representation of Extendible Bilinear Forms
  17. Spectra and Fine Spectra of Lower Triangular Double-Band Matrices as Operators on Lp (1 ≤ p < ∞)
  18. Topological Fundamental Groups and Small Generated Coverings
  19. A Relation between two Kinds of Norms for Martingales
  20. Linearization Regions in Singular Weakly Nonlinear Regression Models with Constraints
  21. Parametric Equilibrium Problems Governed by Topologically Pseudomonotone Bifunctions
  22. Identification of a Parameter in Fourth-Order Partial Differential Equations by an Equation Error Approach
Heruntergeladen am 15.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2015-0067/html
Button zum nach oben scrollen