Startseite Optical fibers performance parameters management under the control of spectral functional light sources with various wavelength windows and thermal effects
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Optical fibers performance parameters management under the control of spectral functional light sources with various wavelength windows and thermal effects

  • Ramachandran Thandaiah Prabu EMAIL logo , Parimala Arumugam , Bussa Ashreetha , Sivakumar Jothilingam , Patan Saleem Akram , Meha Soman und Firoz Mostafa Ali EMAIL logo
Veröffentlicht/Copyright: 12. März 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper has clarified the high speed performance signature of single-mode/multimode graded index silica-doped fibers in point to point link transceiver communication system. Fiber signal attenuation is studied versus ultraviolet wavelength region and different germanium dopant ratios added to silica fibers in point to point link. The fiber signal attenuation is also clarified versus near infrared wavelength region and different germanium dopant ratios added to silica fibers in point to point link. Fiber scattering loss is demonstrated against spectral operating wavelength region and different thermal effects of fiber temperature in point to point link. The modal fiber dispersion is investigated clearly and clarified in relation to fiber numerical aperture at different relative refractive index difference at operating spectral wavelength of 1,550 nm and 1,300 nm near infrared regions.


Corresponding authors: Ramachandran Thandaiah Prabu, Department of ECE, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, SIMATS, Saveetha University, Chennai, Tamil Nadu, India, E-mail: ; and Firoz Mostafa Ali, Sadat Institute of Technology, Giza, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interests: The authors state no conflict of interest.

  6. Research funding: Not applicable.

  7. Data availability: Not applicable.

References

1. Benner, AF, Ignatowski, M, Kash, JA, Kuchta, DM, Ritter, MB. Exploitation of optical interconnects in future server architectures. IBM J Res Dev 2005;49:755–75. https://doi.org/10.1147/rd.494.0755.Suche in Google Scholar

2. Prabu, RT, Arulmozhi, AK, Vijay, S, Bai Vijayan, T, Sivaraman, D, Arulraj, M, et al.. High thermal stability and high-performance efficiency capability of light sources–based rate equation models in optical fiber transmission systems. J Opt Commun 2024;45:1–18. https://doi.org/10.1515/joc-2024-0090.Suche in Google Scholar

3. Miller, D. Device requirements for optical interconnects to silicon chips. Proc IEEE 2009;97:1166–85. https://doi.org/10.1109/jproc.2009.2014298.Suche in Google Scholar

4. Cho, H, Kapur, P, Saraswat, K. Power comparison between high speed electrical and optical interconnects for interchip communication. J Lightwave Technol 2004;22:2021–33. https://doi.org/10.1109/jlt.2004.833531.Suche in Google Scholar

5. Pepeljugoski, P, Golowich, S, Ritger, AJ, Kolesar, P, Risteski, A. Modeling and simulation of next-generation multimode fiber links. J Lightwave Technol 2003;21:1242–55. https://doi.org/10.1109/jlt.2003.811320.Suche in Google Scholar

6. Miller, DAB. Rationale and challenges for optical interconnects to electronic chips. Proc IEEE 2000;88:728–49. https://doi.org/10.1109/5.867687.Suche in Google Scholar

7. Raddatz, L, White, I, Cunningham, DG, Nowell, MC. An experimental and theoretical study of the offset launch technique for the enhancement of the bandwidth of multimode fiber links. J Lightwave Technol 1998;16:324–31. https://doi.org/10.1109/50.661357.Suche in Google Scholar

8. Kuo, HP, Rosenberg, P, Walmsley, R, Mathai, S, Kiyama, L, Straznicky, J, et al.. Free-space optical links for board-to-board interconnects. Appl Phys A 2009;95:955–65. https://doi.org/10.1007/s00339-009-5144-z.Suche in Google Scholar

9. Ciftcioglu, B, Berman, R, Wang, S, Hu, J, Savidis, I, Jain, M, et al.. 3-D integrated heterogeneous intra-chip free-space optical interconnect. Opt Express 2012;20:4331–8. https://doi.org/10.1364/oe.20.004331.Suche in Google Scholar PubMed

10. Wang, K, Nirmalathas, A, Lim, C, Skafidas, E, Alameh, K. High speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability. Opt Express 2013;21:15395–400. https://doi.org/10.1364/oe.21.015395.Suche in Google Scholar PubMed

11. Lipson, M. Guiding, modulating, and emitting light on silicon challenges and opportunities. J Lightwave Technol 2005;23:4222–38. https://doi.org/10.1109/jlt.2005.858225.Suche in Google Scholar

12. Doany, F, Schow, C, Baks, CW, Kuchta, DM, Pepeljugoski, P, Schares, L, et al.. 160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS based transceivers. IEEE Trans Adv Packag 2009;32:345–59. https://doi.org/10.1109/tadvp.2009.2014877.Suche in Google Scholar

13. Bamiedakis, N, Beals, J, Penty, RV, White, IH, DeGroot, JV, Clapp, TV. Cost-effective multimode polymer waveguides for high speed on-board optical interconnects. IEEE J Quant Electron 2009;45:415–24. https://doi.org/10.1109/jqe.2009.2013111.Suche in Google Scholar

14. White, KI. Practical application of the refracted near-field technique for the measurement of optical fibre refractive index profiles. Opt Quant Electron 1978;11:185–96. https://doi.org/10.1007/bf00624397.Suche in Google Scholar

15. Kögel, B, Gustavsson, JS, Haglund, E, Safaisini, R, Joel, a., Westbergh, P, et al.. High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s. Electron Lett 2012;48:1145–7. https://doi.org/10.1049/el.2012.2525.Suche in Google Scholar

16. Safaisini, R, Haglund, E, Larsson, A, Gustavsson, JS, Haglund, EP, Westbergh, P. High-speed 850 nm VCSELs operating error free up to 57 Gbit/s. Electron Lett 2013;49:1021–3. https://doi.org/10.1049/el.2013.2042.Suche in Google Scholar

17. Kuchta, DM, Rylyakov, AV, Schow, CL, Proesel, JE, Baks, CW, et al.. A 50 Gb/s NRZ modulated 850 nm VCSEL transmitter operating error free to 90 °C. J Lightwave Technol 2015;33:802–10. https://doi.org/10.1109/jlt.2014.2363848.Suche in Google Scholar

18. Kuchta, DM, Rylyakov, AV, Doany, FE, Schow, CL, Proesel, JE, Baks, CW, et al.. A 71 Gb/s NRZ modulated 850-nm VCSEL-based optical link. IEEE Photon Technol Lett 2015;27:577–80. https://doi.org/10.1109/lpt.2014.2385671.Suche in Google Scholar

19. Ishigure, T, Nihei, E, Koike, Y. Graded-index polymer optical fiber for high-speed data communication. Appl Opt 1994;33:4261–6. https://doi.org/10.1364/ao.33.004261.Suche in Google Scholar PubMed

20. Kinoshita, R, Moriya, K, Choki, K, Ishigure, T. Polymer optical waveguides with GI and W-shaped cores for high-bandwidth-density on board interconnects. J Lightwave Technol 2013;31:4004–15. https://doi.org/10.1109/jlt.2013.2279791.Suche in Google Scholar

21. Wang, X, Wang, L, Jiang, W, Chen, R. Hard-molded 51 cm long waveguide array with a 150 GHz bandwidth for board-level optical interconnects. Opt Lett 2007;32:677–9. https://doi.org/10.1364/ol.32.000677.Suche in Google Scholar PubMed

22. Kosugi, T, Ishigure, T. Polymer parallel optical waveguide with graded-index rectangular cores and its dispersion analysis. Opt Express 2009;17:15959–68. https://doi.org/10.1364/oe.17.015959.Suche in Google Scholar PubMed

23. Bamiedakis, N, Chen, J, Westbergh, P, Gustavsson, JS, Larsson, A, Penty, RV, et al.. 40 Gb/s data transmission over a 1 m long multimode polymer spiral waveguide for board-level optical interconnects. J Lightwave Technol 2015;33:882–8. https://doi.org/10.1109/jlt.2014.2371491.Suche in Google Scholar

24. Dangel, R, Horst, F, Jubin, D, Meier, N, Weiss, J, Offrein, BJ, et al.. Development of versatile polymer waveguide flex technology for use in optical interconnects. J Lightwave Technol 2013;31:3915–26. https://doi.org/10.1109/jlt.2013.2282499.Suche in Google Scholar

25. Prabu, RT, Balakrishnan, B, Dwaraka Praveena, H, Bai Vijayan, T, Xavier, BM, Perumal, E, et al.. High modulation effects on hybrid optical fiber links and OWC Channel based on optical DP-QSK transceiver systems. J Opt Commun 2024;45:1–15. https://doi.org/10.1515/joc-2024-0015.Suche in Google Scholar

26. Gopalan, A, Arulmozhi, AK, Pandian, MM, Mohanadoss, P, Dorairajan, N, Balaji, M, et al.. Performance parameters estimation of high speed Silicon/Germanium/InGaAsP avalanche photodiodes wide bandwidth capability in ultra high speed optical communication system. J Opt Commun 2024;45:1–15. https://doi.org/10.1515/joc-2024-0099.Suche in Google Scholar

27. Zhou, Z, Zhang, H, Lin, C, Sharma, A. Performance analysis of duobinary and CSRZ modulation based polarization interleaving for high-speed WDM-FSO transmission system. J Opt Commun 2022;43:147–52. https://doi.org/10.1515/joc-2018-0188.Suche in Google Scholar

28. Sharma, A, Mishra, V, Singh, K, Malhotra, J. Hybrid RoF-RoFSO system for broadband services by incorporating polarization division multiplexing scheme. J Opt Commun 2023;44:1–15. https://doi.org/10.1515/joc-2023-0309.Suche in Google Scholar

29. Sharma, A, Singh, K, Malhotra, J. High speed 60 Gbps RGB laser based-FSOC link by incorporating hybrid PDM-MIMO scheme for indoor applications. J Opt Commun 2023;44:1–19. https://doi.org/10.1515/joc-2023-0295.Suche in Google Scholar

30. Chaudhary, S, Sharma, A, Singh, K, Khichar, S, Malhotra, J. Highly efficient photonic radar by incorporating MDM-WDM and machine learning classifiers under adverse weather conditions. PLoS One 2024;19:e0300653. https://doi.org/10.1371/journal.pone.0300653.Suche in Google Scholar PubMed PubMed Central

Received: 2025-01-21
Accepted: 2025-02-14
Published Online: 2025-03-12

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2025-0017/html
Button zum nach oben scrollen