Startseite Long wavelength fluoride optical glass fibers performance signature in high speed local area data networks
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Long wavelength fluoride optical glass fibers performance signature in high speed local area data networks

  • Ramachandran Thandaiah Prabu EMAIL logo , Velmurugan Viruthachalam , Sharon Sweeti , Sripada Rama Sree , Chandran Ramesh Kumar , Satish Addanki und Saber Ali Mahmoud EMAIL logo
Veröffentlicht/Copyright: 24. September 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper has clarified long wavelength fluoride optical glass fibers performance signature in high speed local area data networks. The signal attenuation and the total fiber pulse broadening are studied versus network length for various fluoride optical glass fibers and AS2 Se3 glass fiber at various spectral wavelengths. The total signal delay time is demonstrated with fiber numerical aperture with 15 km network length for various fluoride optical glass fibers and AS2 Se3 glass fiber at 2.5 μm optimum spectral wavelength. Total fiber signal bandwidth, total Shannon channel bit rate, and NRZ/RZ channel data rate transmission are clarified with 15 km network length for various fluoride optical glass fibers and AS2 Se3 glass fiber at 2.5 μm optimum spectral wavelength.


Corresponding authors: Ramachandran Thandaiah Prabu, Department of ECE, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, SIMATS, Saveetha University, Chennai, Tamilnadu, India, E-mail: ; and Saber Ali Mahmoud, Optics Institute, Zagazing, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  4. Research funding: Not applicable.

  5. Data availability: Not applicable.

  6. Conflict of interest: The authors state no conflict of interest.

References

1. Snyder, AW. Coupled-mode theory for optical fibers. J Opt Soc Am 1972;62:1267–77. https://doi.org/10.1364/josa.62.001267.Suche in Google Scholar

2. De Bruyne, S, Speeckaert, MM, Delanghe, JR. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit Rev Clin Lab Sci 2018;55:1–20. https://doi.org/10.1080/10408363.2017.1414142.Suche in Google Scholar PubMed

3. Seddon, AB. Mid-infrared (IR)–A hot topic: the potential for using mid-IR light for non-invasive early detection of skin cancer in vivo. Phys Status Solidi B 2013;250:1020–7. https://doi.org/10.1002/pssb.201248524.Suche in Google Scholar

4. Gopalan, A, Thillaigovindan, A, Mohan Patnala, P, Mary Lesley, H, Sundaram, M, Srinivasan, V, et al.. High speed operation efficiency of doped light sources with the silica-doped fiber channel for extended optical fiber system reach. J Opt Commun 2024;45:1–14. https://doi.org/10.1515/joc-2024-0130.Suche in Google Scholar

5. Pleitez, MA, Khan, AA, Soldà, A, Chmyrov, A, Reber, J, Gasparin, F, et al.. Label-free metabolic imaging by mid-infrared optoacoustic microscopy in living cells. Nat Biotechnol 2020;38:293–6. https://doi.org/10.1038/s41587-019-0359-9.Suche in Google Scholar PubMed

6. Türker-Kaya, S, Huck, CW. A review of mid-infrared and near-infrared imaging: principles, concepts and applications in plant tissue analysis. Molecules 2017;22:168–77. https://doi.org/10.3390/molecules22010168.Suche in Google Scholar PubMed PubMed Central

7. Gong, Y, Bu, L, Yang, B, Mustafa, F. High repetition rate mid-infrared differential absorption lidar for atmospheric pollution detection. Sensors 2020;20:2211. https://doi.org/10.3390/s20082211.Suche in Google Scholar PubMed PubMed Central

8. Tugendhaft, I, Bornstein, A, Weissman, Y, Hardy, AA. Directional multimode fiber couplers in the mid-infrared. Opt Eng 1995;34:2846–9. https://doi.org/10.1117/12.210769.Suche in Google Scholar

9. Schaafsma, D, Moon, J, Sanghera, J, Aggarwal, I. Fused taper infrared optical fiber couplers in chalcogenide glass. J Lightwave Technol 1997;15:2242–5. https://doi.org/10.1109/50.643548.Suche in Google Scholar

10. Athanasiou, GS, Bereś-Pawlik, E, Semczuk, G, Furniss, D, Seddon, AB, Benson, TM. Large core, multimode, chalcogenide glass fibre coupler by side-polishing. Opt Quant Electron 2013;45:961–7. https://doi.org/10.1007/s11082-013-9704-2.Suche in Google Scholar

11. Tavakoli, F, Rekik, A, Rochette, M. Broadband and wavelength-dependent chalcogenide optical fiber couplers. IEEE Photonics Technol Lett 2017;29:735–8. https://doi.org/10.1109/lpt.2017.2682821.Suche in Google Scholar

12. Benderov, O, Nechepurenko, I, Stepanov, B, Tebeneva, T, Kotereva, T, Snopatin, G, et al.. Broadband mid-IR chalcogenide fiber couplers. Appl Opt 2019;58:7222–6. https://doi.org/10.1364/ao.58.007222.Suche in Google Scholar

13. Li, L, Al-Kadry, A, Abdukerim, N, Rochette, M. Design, fabrication and characterization of PC, COP and PMMA-cladded As2Se3 microwires. Opt Mater Express 2016;6:912–21. https://doi.org/10.1364/ome.6.000912.Suche in Google Scholar

14. Rezaei, M, Shamim, MHM, El Amraoui, M, Messaddeq, Y, Rochette, M. Nonlinear chalcogenide optical fiber couplers. Opt Express 2022;30:20288–97. https://doi.org/10.1364/oe.458767.Suche in Google Scholar PubMed

15. Ramkumar, G, Rajasekaran, V, Sivaraman, D, Arumugam, S, Dwaraka Praveena, H, Prathima, S, et al.. Comparative analysis of high index core micro structured optical fibers (HIMSOF) and hollow core band gap fibers (HCBGF) performance efficiency in fiber communication system. J Opt Commun 2024;45:102–15. https://doi.org/10.1515/joc-2024-0085.Suche in Google Scholar

16. Baker, C, Rochette, M. A generalized heat-brush approach for precise control of the waist profile in fiber tapers. Opt Mater Express 2011;1:1065–76. https://doi.org/10.1364/ome.1.001065.Suche in Google Scholar

17. Rezaei, M, Rochette, M. All-chalcogenide ring fiber laser. Opt Fiber Technol 2022;71:102–907. https://doi.org/10.1016/j.yofte.2022.102900.Suche in Google Scholar

18. Baker, C, Rochette, M. Highly nonlinear hybrid AsSe-PMMA microtapers. Opt Express 2010;18:12391–8. https://doi.org/10.1364/oe.18.012391.Suche in Google Scholar

19. Moore, L, MacFarlane, D, Newman, P. Surface crystallization of ZBLAN glasses. J Non-Cryst Solids 1992;140:159–65. https://doi.org/10.1016/s0022-3093(05)80761-6.Suche in Google Scholar

20. Torres, A, Barr, R. A quantitative characterization of micro-gravity and unit-gravity processed ZBLAN glass. Mater Char 2015;107:386–97. https://doi.org/10.1016/j.matchar.2015.08.004.Suche in Google Scholar

21. Torres, A, Ganley, J, Maji, A. Experimental and analytical techniques for studying ZBLAN crystallization in microgravity. Exp Tech 2016;40:501–12. https://doi.org/10.1007/s40799-016-0052-6.Suche in Google Scholar

22. Xia, C, Xu, Z, Islam, MN, Terry, FL, Freeman, MJ, Zakel, A, et al.. 10.5 W time-averaged power Mid-IR supercontinuum generation extending beyond 4μm with direct pulse pattern modulation. IEEE J Sel Top Quant Electron 2009;15:422–34. https://doi.org/10.1109/jstqe.2008.2010233.Suche in Google Scholar

23. Sanghera, J, Aggarwal, I. Active and passive chalcogenide glass optical fibers for ir applications: a review. J Non-Cryst Solids 1999;256-257:6–16. https://doi.org/10.1016/s0022-3093(99)00484-6.Suche in Google Scholar

24. Matusita, K, Koide, M, Komatsu, T. Viscous flow mechanism of fluoride glasses over a wide temperature range. J Non-Cryst Solids 1992;140:141–5. https://doi.org/10.1016/s0022-3093(05)80757-4.Suche in Google Scholar

25. Ducharme, É, Virally, S, Becerra-Deana, RI, Boudoux, C, Godbout, N. Viscosity of fluoride glass fibers for fused component fabrication. Appl Opt 2022;61:5031–9. https://doi.org/10.1364/ao.455528.Suche in Google Scholar

26. Annunziato, A, Anelli, F, Du Teilleul, PLP, Cozic, S, Poulain, S, Prudenzano, F. Fused optical fiber combiner based on indium fluoride glass: perspectives for mid-IR applications. Opt Express 2022;30:44160–74. https://doi.org/10.1364/oe.471090.Suche in Google Scholar PubMed

27. Love, J, Henry, W. Quantifying loss minimisation in single-mode fibre tapers. Electron Lett 1986;22:912–14. https://doi.org/10.1049/el:19860622.10.1049/el:19860622Suche in Google Scholar

28. da Silva Andrade, D, da Silva Rego, JH, Morais, PC, Rojas, MF. Chemical and mechanical characterization of ternary cement pastes containing metakaolin and nanosilica. Construct Build Mater 2018;159:18–26.10.1016/j.conbuildmat.2017.10.123Suche in Google Scholar

29. Gopalan, A, Arulmozhi, AK, Pandian, MM, Mohanadoss, P, Dorairajan, N, Balaji, M, et al.. Performance parameters estimation of high speed Silicon/Germanium/InGaAsP avalanche photodiodes wide bandwidth capability in ultra high speed optical communication system. J Opt Commun 2024;45:33–45. https://doi.org/10.1515/joc-2024-0099.Suche in Google Scholar

30. Ramkumar, G, Shahila, FD, Lingaraj, V, Chandran, P, Chidambaram, V, Arumugam, P, et al.. Total losses and dispersion effects management and upgrading fiber reach in ultra-high optical transmission system based on hybrid amplification system. Journal Opt Commun 2024;45:133–46. https://doi.org/10.1515/joc-2024-0074.Suche in Google Scholar

31. Rezaei, M, Rochette, M. All-chalcogenide single-mode optical fiber couplers. Opt Lett 2019;44:5266–9. https://doi.org/10.1364/ol.44.005266.Suche in Google Scholar

Received: 2024-07-15
Accepted: 2024-09-04
Published Online: 2024-09-24

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/joc-2024-0180/pdf
Button zum nach oben scrollen