Startseite A posteriori error estimate for a WG method of H(curl)-elliptic problems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A posteriori error estimate for a WG method of H(curl)-elliptic problems

  • Jie Peng , Yingying Xie EMAIL logo und Liuqiang Zhong
Veröffentlicht/Copyright: 22. August 2023

Abstract

This paper presents a posteriori error estimate for the weak Galerkin (WG) finite element method used to solve H(curl)-elliptic problems. Firstly, we introduce a WG method for solving H(curl)-elliptic problems and a corresponding residual type error estimator without a stabilization term. Secondly, we establish the reliability of the error estimator by demonstrating that the stabilization term is controlled by the error estimator. We also evaluate the efficiency of the error estimator using standard bubble functions. Finally, we present some numerical results to show the performances of the error estimator in both uniform and adaptive meshes.

JEL Classification: 65N15; 65N30

Funding statement: The authors are supported by the National Natural Science Foundation of China (No. 12071160). The first author is also supported by the National Natural Science Foundation of China (No. 12101250) and the Science and Technology Projects in Guangzhou (No. 202201010644). The second author is supported by the National Natural Science Foundation of China (No. 12101147).

References

[1] A. Bonito and R. H. Nochetto, Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal., 48 (2010), 734–771.10.1137/08072838XSuche in Google Scholar

[2] A. Bossavit, Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements. Vol. 2 of Electromagnetism Series. Academic Press, San Diego, CA, 1998.Suche in Google Scholar

[3] S. M. Chai, Y. Wang, W. J. Zhao, and Y. K. Zou, A c0 weak Galerkin method for linear Cahn–Hilliard–Cook equation with random initial condition. Appl. Math. Comput., 414 (2022), 126659.10.1016/j.amc.2021.126659Suche in Google Scholar

[4] L. Chen, J. P. Wang, and X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems. J. Sci. Comput., 59 (2014), 496–511.10.1007/s10915-013-9771-3Suche in Google Scholar

[5] Y. M. Chen, G. Chen, and X. P. Xie, Weak Galerkin finite element method for Biot’s consolidation problem. J. Comput. Appl. Math., 330 (2018), 398–416.10.1016/j.cam.2017.09.019Suche in Google Scholar

[6] M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element method for a singularly-perturbed biharmonic equation. J. Sci. Comput., 82 (2020), 5.10.1007/s10915-019-01120-zSuche in Google Scholar

[7] B. Deka and N. Kumar, Error estimates in weak Galerkin finite element methods for parabolic equations under low regularity assumptions. Appl. Numer. Math., 162 (2021), 81–105.10.1016/j.apnum.2020.12.003Suche in Google Scholar

[8] B. Deka and P. Roy, Weak Galerkin finite element methods for electric interface model with nonhomogeneous jump conditions. Numer. Meth. Part. D. E., 36 (2020), 734–755.10.1002/num.22446Suche in Google Scholar

[9] R. Hiptmair, Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal., 36 (1999), 204–225.10.1137/S0036142997326203Suche in Google Scholar

[10] P. Houston, I. Perugia, A. Schneebeli, and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math., 100 (2005), 485–518.10.1007/s00211-005-0604-7Suche in Google Scholar

[11] P. Houston, I. Perugia, and D. Schötzau, An a posteriori error indicator for discontinuous Galerkin discretizations of h(curl)-elliptic partial differential equations. IMA J. Numer. Anal., 27 (2007), 122–150.10.1093/imanum/drl012Suche in Google Scholar

[12] Q. Hu, Y. He, and K. Wang, Weak Galerkin method for the Helmholtz equation with DTN boundary condition. Int. J of Numer. Anal. Model., 17 (2020), 643–661.Suche in Google Scholar

[13] G. R. Li, Y. P. Chen, and Y. Q. Huang, A new weak Galerkin finite element scheme for general second-order elliptic problems. J. Comp. Appl. Math., 344 (2018), 701–715.10.1016/j.cam.2018.05.021Suche in Google Scholar

[14] H. G. Li, L. Mu, and X. Ye, A posteriori error estimates for the weak Galerkin finite element methods on polytopal meshes. Comm. Comput. Phys., 26 (2019), 558–578.10.4208/cicp.OA-2018-0058Suche in Google Scholar

[15] J. G. Liu, S. Tavener, and Z. R. Wang, Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes. SIAM J. Sci. Comput., 40 (2018), B1229–B1252.10.1137/17M1145677Suche in Google Scholar

[16] Y. Liu and Y. F. Nie, A priori and a posteriori error estimates of the weak Galerkin finite element method for parabolic problems. Comput. Math. Appl., 99 (2021), 73–83.10.1016/j.camwa.2021.08.002Suche in Google Scholar

[17] L. Mu, Weak Galerkin based a posteriori error estimates for second order elliptic interface problems on polygonal meshes. J. Comput. Appl. Math., 361 (2019), 413–425.10.1016/j.cam.2019.04.026Suche in Google Scholar

[18] L. Mu, J. P. Wang, X. Ye, and S. Y. Zhang, A weak Galerkin finite element method for the Maxwell equation. J. Sci. Comput., 65 (2015), 363–386.10.1007/s10915-014-9964-4Suche in Google Scholar

[19] W. Y. Qi and L. J. Song, Weak Galerkin method with implicit ϑ-schemes for second-order parabolic problems. Appl. Math. Comput., 366 (2020), 124731.10.1016/j.amc.2019.124731Suche in Google Scholar

[20] J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comp., 77 (2008), 633–649.10.1090/S0025-5718-07-02030-3Suche in Google Scholar

[21] S. Shields, J. C. Li, and E. A. Machorro, Weak Galerkin methods for time-dependent Maxwell’s equations. Comput. Math. Appl., 74 (2017), 2106–2124.10.1016/j.camwa.2017.07.047Suche in Google Scholar

[22] M. Sun and H. X. Rui, A coupling of weak Galerkin and mixed finite element methods for poroelasticity. Comput. Math. Appl., 73 (2017), 804–823.10.1016/j.camwa.2017.01.007Suche in Google Scholar

[23] C. M. Wang, New discretization schemes for time-harmonic Maxwell equations by weak Galerkin finite element. J. Comput. Appl. Math., 341 (2018), 127–143.10.1016/j.cam.2018.04.015Suche in Google Scholar

[24] J. P. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems. J. Comp. Appl. Math., 241 (2013), 103–115.10.1016/j.cam.2012.10.003Suche in Google Scholar

[25] X. S. Wang, X. Ye, S. Y. Zhang, and P. Zhu, A weak Galerkin least squares finite element method of Cauchy problem for Poisson equation. J. Comput. Appl. Math., 401 (2022), 113767.10.1016/j.cam.2021.113767Suche in Google Scholar

[26] Y. Y. Xie, M. Tang, and C. M. Tang, A weak Galerkin finite element method for indefinite time-harmonic Maxwell equations. Appl. Math. Comput., 435 (2021), 127471.10.1016/j.amc.2022.127471Suche in Google Scholar

[27] S. Xu, A posteriori error estimates for weak Galerkin methods for second order elliptic problems on polygonal meshes. Appl. Numer. Math., 161 (2021), 510–524.10.1016/j.apnum.2020.12.005Suche in Google Scholar

[28] Q. L. Zhai, X. He Hu, R. Zhang, and Z. M. Zhang, Acceleration of weak Galerkin methods for the Laplacian eigenvalue problem. J. Sci. Comput., 79 (2019), 914–934.10.1007/s10915-018-0877-5Suche in Google Scholar

[29] J. C. Zhang, J. S. Li, J. Z. Li, and K. Zhang, An adaptive weak Galerkin finite element method with hierarchical bases for the elliptic problem. Numer. Methods Partial Differential Equations, 36 (2020), 1280–1303.10.1002/num.22473Suche in Google Scholar

[30] T. Zhang and Y. L. Chen, A posteriori error analysis for the weak Galerkin method for solving elliptic problems. Int. J. Comput. Methods, 15 (2018), 1850075.10.1142/S0219876218500755Suche in Google Scholar

[31] P. Zhu and S. L. Xie, Superconvergent weak Galerkin methods for non-self adjoint and indefinite elliptic problems. Appl. Numer. Math., 172 (2022), 300–314.10.1016/j.apnum.2021.10.014Suche in Google Scholar

Received: 2023-01-15
Revised: 2023-05-23
Accepted: 2023-07-06
Published Online: 2023-08-22
Published in Print: 2024-06-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2023-0014/html
Button zum nach oben scrollen