Startseite Stabilized weighted reduced order methods for parametrized advection-dominated optimal control problems governed by partial differential equations with random inputs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Stabilized weighted reduced order methods for parametrized advection-dominated optimal control problems governed by partial differential equations with random inputs

  • Fabio Zoccolan ORCID logo , Maria Strazzullo ORCID logo und Gianluigi Rozza ORCID logo EMAIL logo
Veröffentlicht/Copyright: 7. Oktober 2024

Abstract

In this work, we analyze Parametrized Advection-Dominated distributed Optimal Control Problems with random inputs in a Reduced Order Model (ROM) context. All the simulations are initially based on a finite element method (FEM) discretization; moreover, a space-time approach is considered when dealing with unsteady cases. To overcome numerical instabilities that can occur in the optimality system for high values of the Péclet number, we consider a Streamline Upwind Petrov–Galerkin technique applied in an optimize-then-discretize approach. We combine this method with the ROM framework in order to consider two possibilities of stabilization: Offline-Only stabilization and Offline-Online stabilization. Moreover we consider random parameters and we use a weighted Proper Orthogonal Decomposition algorithm in a partitioned approach to deal with the issue of uncertainty quantification. Several quadrature techniques are used to derive weighted ROMs: tensor rules, isotropic sparse grids, Monte-Carlo and quasi Monte-Carlo methods. We compare all the approaches analyzing relative errors between the FEM and ROM solutions and the computational efficiency based on the speedup-index.

MSC 2010 Classification: 65M60; 49J20; 49M41; 60H25; 60H35

Corresponding author: Gianluigi Rozza, mathLab, Mathematics Area, SISSA, via Bonomea 265, I-34136 Trieste, Italy, E-mail: 

Acknowledgment

The computations in this work have been performed with RBniCS [54] library, developed at SISSA mathLab, which is an implementation in FEniCS [56] of several reduced order modelling techniques; we acknowledge developers and contributors to both libraries.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  4. Competing interests: The authors state no conflict of interest.

  5. Research funding: We acknowledge the support by European Union Funding for Research and Innovation – Horizon 2020 Program – in the framework of European Research Council Executive Agency: Consolidator Grant H2020 ERC CoG 2015 AROMA-CFD project 681447 “Advanced Reduced Order Methods with Applications in Computational Fluid Dynamics”. We also acknowledge the PRIN 2017 “Numerical Analysis for Full and Reduced Order Methods for the efficient and accurate solution of complex systems governed by Partial Differential Equations” (NA-FROM-PDEs) and the INDAM-GNCS project “Tecniche Numeriche Avanzate per Applicazioni Industriali”.

  6. Data availability: Not applicable.

References

[1] P. Benner, M. Ohlberger, A. Patera, G. Rozza, and K. Urban, Model Reduction of Parametrized Systems, Cham, Springer, 2017.10.1007/978-3-319-58786-8Suche in Google Scholar

[2] J. S. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, vol. 590, Heidelberg, Springer, 2016.10.1007/978-3-319-22470-1Suche in Google Scholar

[3] A. Quarteroni, G. Rozza, and A. Manzoni, “Certified reduced basis approximation for parametrized partial differential equations and applications,” J. Math. Ind., vol. 1, no. 1, pp. 1–49, 2011. https://doi.org/10.1186/2190-5983-1-3.Suche in Google Scholar

[4] A. Quarteroni, et al.., Reduced Order Methods for Modeling and Computational Reduction, vol. 9, Berlin, Springer, 2014.10.1007/978-3-319-02090-7Suche in Google Scholar

[5] A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, vol. 92, Heidelberg, Springer, 2015.10.1007/978-3-319-15431-2Suche in Google Scholar

[6] L. Venturi, D. Torlo, F. Ballarin, and G. Rozza, “Weighted reduced order methods for parametrized partial differential equations with random inputs,” in Uncertainty Modeling for Engineering Applications, Cham, Springer, 2019, pp. 27–40.10.1007/978-3-030-04870-9_2Suche in Google Scholar

[7] L. Venturi, F. Ballarin, and G. Rozza, “A weighted POD method for elliptic PDEs with random inputs,” J. Sci. Comput., vol. 81, no. 1, pp. 136–153, 2019. https://doi.org/10.1007/s10915-018-0830-7.Suche in Google Scholar

[8] M. Kärcher, Z. Tokoutsi, M. A. Grepl, and K. Veroy, “Certified reduced basis methods for parametrized elliptic optimal control problems with distributed controls,” J. Sci. Comput., vol. 75, no. 1, pp. 276–307, 2018. https://doi.org/10.1007/s10915-017-0539-z.Suche in Google Scholar

[9] F. Negri, A. Manzoni, and G. Rozza, “Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations,” Comput. Math. Appl., vol. 69, no. 4, pp. 319–336, 2015. https://doi.org/10.1016/j.camwa.2014.12.010.Suche in Google Scholar

[10] M. Strazzullo, F. Ballarin, R. Mosetti, and G. Rozza, “Model reduction for parametrized optimal control problems in environmental marine sciences and engineering,” SIAM J. Sci. Comput., vol. 40, no. 4, pp. B1055–B1079, 2018. https://doi.org/10.1137/17m1150591.Suche in Google Scholar

[11] F. Zoccolan, M. Strazzullo, and G. Rozza, “A streamline upwind petrov-galerkin reduced order method for advection-dominated partial differential equations under optimal control,” in Computational Methods in Applied Mathematics, Berlin, Germany, De Gruyter, 2024.10.1515/cmam-2023-0171Suche in Google Scholar

[12] G. Carere, M. Strazzullo, F. Ballarin, G. Rozza, and R. Stevenson, “A weighted POD-reduction approach for parametrized PDE-constrained optimal control problems with random inputs and applications to environmental sciences,” Comput. Math. Appl., vol. 102, pp. 261–276, 2021, https://doi.org/10.1016/j.camwa.2021.10.020.Suche in Google Scholar

[13] P. Chen, A. Quarteroni, and G. Rozza, “A weighted reduced basis method for elliptic partial differential equations with random input data,” SIAM J. Numer. Anal., vol. 51, no. 6, pp. 3163–3185, 2013. https://doi.org/10.1137/130905253.Suche in Google Scholar

[14] P. Chen and A. Quarteroni, “Weighted reduced basis method for stochastic optimal control problems with elliptic PDE constraint,” SIAM/ASA J. Uncertain. Quantification, vol. 2, no. 1, pp. 364–396, 2014. https://doi.org/10.1137/130940517.Suche in Google Scholar

[15] P. Chen, A. Quarteroni, and G. Rozza, “Comparison between reduced basis and stochastic collocation methods for elliptic problems,” J. Sci. Comput., vol. 59, no. 1, pp. 187–216, 2014. https://doi.org/10.1007/s10915-013-9764-2.Suche in Google Scholar

[16] P. Chen, A. Quarteroni, and G. Rozza, “Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by Stokes equations,” Numer. Math., vol. 133, no. 1, pp. 67–102, 2016. https://doi.org/10.1007/s00211-015-0743-4.Suche in Google Scholar

[17] P. Chen, A. Quarteroni, and G. Rozza, “Reduced basis methods for uncertainty quantification,” SIAM/ASA J. Uncertain. Quantification, vol. 5, no. 1, pp. 813–869, 2017. https://doi.org/10.1137/151004550.Suche in Google Scholar

[18] C. Spannring, S. Ullmann, and J. Lang, “A weighted reduced basis method for parabolic PDEs with random data,” in International Conference on Computational Engineering, Springer, 2017, pp. 145–161.10.1007/978-3-319-93891-2_9Suche in Google Scholar

[19] D. Torlo, F. Ballarin, and G. Rozza, “Stabilized weighted reduced basis methods for parametrized advection dominated problems with random inputs,” SIAM/ASA J. Uncertain. Quantification, vol. 6, no. 4, pp. 1475–1502, 2018. https://doi.org/10.1137/17m1163517.Suche in Google Scholar

[20] L. Hou, J. Lee, and H. Manouzi, “Finite element approximations of stochastic optimal control problems constrained by stochastic elliptic PDEs,” J. Math. Anal. Appl., vol. 384, no. 1, pp. 87–103, 2011. https://doi.org/10.1016/j.jmaa.2010.07.036.Suche in Google Scholar

[21] M. Hinze, M. Köster, and S. Turek, “A hierarchical space-time solver for distributed control of the Stokes equation,” Technical Report, SPP1253-16-01, 2008.Suche in Google Scholar

[22] M. Stoll and A. J. Wathen, “All-at-once solution of time-dependent PDE-constrained optimization problems,” Unspecified, Tech. Rep, 2010.Suche in Google Scholar

[23] M. Stoll and A. Wathen, “All-at-once solution of time-dependent Stokes control,” J. Comput. Phys., vol. 232, no. 1, pp. 498–515, 2013. https://doi.org/10.1016/j.jcp.2012.08.039.Suche in Google Scholar

[24] A. N. Brooks and T. J. Hughes, “Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations,” Comput. Methods Appl. Mech. Eng., vol. 32, nos. 1–3, pp. 199–259, 1982. https://doi.org/10.1016/0045-7825(82)90071-8.Suche in Google Scholar

[25] T. J. Hughes, “Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier–Stokes equations,” Int. J. Numer. Methods Fluids, vol. 7, no. 11, pp. 1261–1275, 1987. https://doi.org/10.1002/fld.1650071108.Suche in Google Scholar

[26] A. Quarteroni, Numerical Models for Differential Problems, vol. 2, Milano, Springer, 2009.10.1007/978-88-470-1071-0Suche in Google Scholar

[27] M. Strazzullo, M. Girfoglio, F. Ballarin, T. Iliescu, and G. Rozza, “Consistency of the full and reduced order models for evolve-filter-relax regularization of convection-dominated, marginally-resolved flows,” Int. J. Numer. Methods Eng., vol. 123, no. 14, pp. 3148–3178, 2022. https://doi.org/10.1002/nme.6942.Suche in Google Scholar PubMed PubMed Central

[28] M. Strazzullo, F. Ballarin, and G. Rozza, “POD-Galerkin model order reduction for parametrized time dependent linear quadratic optimal control problems in saddle point formulation,” J. Sci. Comput., vol. 83, no. 55, pp. 1–35, 2020. https://doi.org/10.1007/s10915-020-01232-x.Suche in Google Scholar

[29] M. Strazzullo, F. Ballarin, and G. Rozza, “A certified reduced basis method for linear parametrized parabolic optimal control problems in space-time formulation,” arXiv preprint arXiv:2103.00460, 2021.Suche in Google Scholar

[30] M. Strazzullo, F. Ballarin, and G. Rozza, “POD-Galerkin model order reduction for parametrized nonlinear time-dependent optimal flow control: an application to shallow water equations,” J. Numer. Math., vol. 30, no. 1, pp. 63–84, 2022. https://doi.org/10.1515/jnma-2020-0098.Suche in Google Scholar

[31] P. Pacciarini and G. Rozza, “Stabilized reduced basis method for parametrized advection–diffusion PDEs,” Comput. Methods Appl. Mech. Eng., vol. 274, pp. 1–18, 2014, https://doi.org/10.1016/j.cma.2014.02.005.Suche in Google Scholar

[32] S. S. Collis and M. Heinkenschloss, “Analysis of the streamline upwind/Petrov–Galerkin method applied to the solution of optimal control problems,” CAAM TR02-01, vol. 108, 2002.Suche in Google Scholar

[33] F. Brezzi, “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers,” in Publications mathématiques et informatique de Rennes, no. S4, 1974, pp. 1–26.Suche in Google Scholar

[34] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, vol. 15, New York, Springer Science & Business Media, 2012.Suche in Google Scholar

[35] G. Carere, Reduced Order Methods for Optimal Control Problems Constrained by PDEs with Random Inputs and Applications, Master’s thesis, University of Amsterdam and SISSA, 2019.Suche in Google Scholar

[36] F. Ballarin, G. Rozza, and M. Strazzullo, “Chapter 9 – space-time POD-Galerkin approach for parametric flow control,” in Numerical Control: Part A, ser. Handbook of Numerical Analysis, vol. 23, E. Trélat and E. Zuazua, Eds., Elsevier, 2022, pp. 307–338. [Online]. Available at: https://www.sciencedirect.com/science/article/pii/S1570865921000247.10.1016/bs.hna.2021.12.009Suche in Google Scholar

[37] P. Chen, A. Quarteroni, and G. Rozza, “Stochastic optimal Robin boundary control problems of advection-dominated elliptic equations,” SIAM J. Numer. Anal., vol. 51, no. 5, pp. 2700–2722, 2013. https://doi.org/10.1137/120884158.Suche in Google Scholar

[38] A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, vol. 23, Heidelberg, Springer Science & Business Media, 2008.Suche in Google Scholar

[39] T. J. Hughes, “A multidimensional upwind scheme with no crosswind diffusion,” in Finite Element Methods for Convection Dominated Flows, AMD 34, 1979.Suche in Google Scholar

[40] T. Akman, B. Karasözen, and Z. Kanar-Seymen, “Streamline upwind/Petrov–Galerkin solution of optimal control problems governed by time-dependent diffusion-convection-reaction equations,” TWMS J. Appl. Eng. Math., vol. 7, no. 2, pp. 221–235, 2017.Suche in Google Scholar

[41] K. Eriksson and C. Johnson, “Error estimates and automatic time step control for nonlinear parabolic problems, I,” SIAM J. Numer. Anal., vol. 24, no. 1, pp. 12–23, 1987. https://doi.org/10.1137/0724002.Suche in Google Scholar

[42] V. John and J. Novo, “Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations,” SIAM J. Numer. Anal., vol. 49, no. 3, pp. 1149–1176, 2011. https://doi.org/10.1137/100789002.Suche in Google Scholar

[43] D. Torlo, Stabilized Reduced Basis Method for Transport PDEs with Random Inputs, Master’s thesis, University of Trieste and SISSA, 2016.Suche in Google Scholar

[44] C. Schwab and R. A. Todor, “Karhunen-Loève approximation of random fields by generalized fast multipole methods,” J. Comput. Phys., vol. 217, no. 1, pp. 100–122, 2006. https://doi.org/10.1016/j.jcp.2006.01.048.Suche in Google Scholar

[45] L. Dedè, “Reduced basis method and A posteriori error estimation for parametrized linear-quadratic optimal control problems,” SIAM J. Sci. Comput., vol. 32, no. 2, pp. 997–1019, 2010. https://doi.org/10.1137/090760453.Suche in Google Scholar

[46] A.-L. Gerner and K. Veroy, “Certified reduced basis methods for parametrized saddle point problems,” SIAM J. Sci. Comput., vol. 34, no. 5, pp. A2812–A2836, 2012. https://doi.org/10.1137/110854084.Suche in Google Scholar

[47] K. Kunisch and S. Volkwein, “Proper orthogonal decomposition for optimality systems,” ESAIM: Math. Model. Numer. Anal., vol. 42, no. 1, pp. 1–23, 2008, https://doi.org/10.1051/m2an:2007054.10.1051/m2an:2007054Suche in Google Scholar

[48] F. Negri, G. Rozza, A. Manzoni, and A. Quarteroni, “Reduced basis method for parametrized elliptic optimal control problems,” SIAM J. Sci. Comput., vol. 35, no. 5, pp. A2316–A2340, 2013. https://doi.org/10.1137/120894737.Suche in Google Scholar

[49] T. J. Sullivan, Introduction to Uncertainty Quantification, vol. 63, Heidelberg, Springer, 2015.10.1007/978-3-319-23395-6Suche in Google Scholar

[50] A. Ralston and P. Rabinowitz, A First Course in Numerical Analysis, Mineola, New York, Courier Corporation, 2001.Suche in Google Scholar

[51] S. A. Smolyak, “Quadrature and interpolation formulas for tensor products of certain classes of functions,” Dokl. Akad. Nauk, vol. 148, pp. 1042–1045, 1963.Suche in Google Scholar

[52] D. Xiu and J. S. Hesthaven, “High-order collocation methods for differential equations with random inputs,” SIAM J. Sci. Comput., vol. 27, no. 3, pp. 1118–1139, 2005. https://doi.org/10.1137/040615201.Suche in Google Scholar

[53] F. Nobile, R. Tempone, and C. G. Webster, “A sparse grid stochastic collocation method for partial differential equations with random input data,” SIAM J. Numer. Anal., vol. 46, no. 5, pp. 2309–2345, 2008. https://doi.org/10.1137/060663660.Suche in Google Scholar

[54] “RBniCS – reduced order modelling in FEniCS,” Available at: https://www.rbnicsproject.org/.Suche in Google Scholar

[55] “Multiphenics – easy prototyping of multiphysics problems in FEniCS,” Available at: https://mathlab.sissa.it/multiphenics.Suche in Google Scholar

[56] A. Logg, K.-A. Mardal, and G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, vol. 84, Berlin, Springer Science & Business Media, 2012.10.1007/978-3-642-23099-8Suche in Google Scholar

[57] F. Gelsomino and G. Rozza, “Comparison and combination of reduced-order modelling techniques in 3D parametrized heat transfer problems,” Math. Comput. Model. Dynam. Syst., vol. 17, no. 4, pp. 371–394, 2011. https://doi.org/10.1080/13873954.2011.547672.Suche in Google Scholar

[58] G. Rozza, N.-C. Nguyen, A. T. Patera, and S. Deparis, “Reduced basis methods and a posteriori error estimators for heat transfer problems,” in Heat Transfer Summer Conference, vol. 43574, 2009, pp. 753–762.10.1115/HT2009-88211Suche in Google Scholar

[59] G. Rozza, D. B. P. Huynh, and A. T. Patera, “Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations,” Arch. Comput. Methods Eng., vol. 15, no. 3, pp. 229–275, 2008. https://doi.org/10.1007/s11831-008-9019-9.Suche in Google Scholar

[60] G. Rozza, “Reduced basis approximation and error bounds for potential flows in parametrized geometries,” Commun. Comput. Phys., vol. 9, no. 1, pp. 1–48, 2011. https://doi.org/10.4208/cicp.100310.260710a.Suche in Google Scholar

[61] M. Strazzullo, Model Order Reduction for Nonlinear and Time-Dependent Parametric Optimal Flow Control Problems, Ph.D. thesis, SISSA, 2021.Suche in Google Scholar

[62] S. Ali, Stabilized Reduced Basis Methods for the Approximation of Parametrized Viscous Flows, Ph.D. thesis, SISSA, 2018.Suche in Google Scholar

[63] R. Chakir, Y. Maday, and P. Parnaudeau, “A non-intrusive reduced basis approach for parametrized heat transfer problems,” J. Comput. Phys., vol. 376, pp. 617–633, 2019, https://doi.org/10.1016/j.jcp.2018.10.001.Suche in Google Scholar

[64] Y. Maday and E. Tadmor, “Analysis of the spectral vanishing viscosity method for periodic conservation laws,” SIAM J. Numer. Anal., vol. 26, no. 4, pp. 854–870, 1989. https://doi.org/10.1137/0726047.Suche in Google Scholar

[65] Y. Maday, A. Manzoni, and A. Quarteroni, “An online intrinsic stabilization strategy for the reduced basis approximation of parametrized advection-dominated problems,” Comptes Rendus. Math., vol. 354, no. 12, pp. 1188–1194, 2016. https://doi.org/10.1016/j.crma.2016.10.008.Suche in Google Scholar

[66] S. Ali, F. Ballarin, and G. Rozza, “A Reduced basis stabilization for the unsteady Stokes and Navier–Stokes equations,” Adv. Comput. Sci. Eng., vol. 1, no. 2, pp. 180–201, 2023.10.3934/acse.2023008Suche in Google Scholar

Received: 2023-01-04
Accepted: 2024-08-09
Published Online: 2024-10-07
Published in Print: 2025-03-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2023-0006/html
Button zum nach oben scrollen