Abstract
In the present paper, we examine a Crouzeix–Raviart approximation for non-linear partial differential equations having a (p, δ)-structure for some p ∈ (1, ∞) and δ ⩾ 0. We establish a priori error estimates, which are optimal for all p ∈ (1, ∞) and δ ⩾ 0, medius error estimates, i.e., best-approximation results, and a primal–dual a posteriori error estimate, which is both reliable and efficient. The theoretical findings are supported by numerical experiments.
Acknowledgment
The author is grateful for the stimulating discussions with S. Bartels.
References
[1] E. Acerbi and N. Fusco, Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2, J. Math. Anal. Appl. 140 (1989), No. 1, 115–135.10.1016/0022-247X(89)90098-XSuche in Google Scholar
[2] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23 (2001), No. 1, 15–41.10.1137/S0895479899358194Suche in Google Scholar
[3] S. Balay, S. Abhyankar, M. F. Adams, F. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang, PETSc Web page, https://www.mcs.anl.gov/petsc, 2019.Suche in Google Scholar
[4] J. W. Barrett and W. B. Liu, Finite element approximation of the p-Laplacian, Math. Comp. 61 (1993), No. 204, 523–537.10.1090/S0025-5718-1993-1192966-4Suche in Google Scholar
[5] J. W. Barrett and W. B. Liu, Finite element approximation of degenerate quasilinear elliptic and parabolic problems, Numerical Analysis 1993 (Dundee, 1993), Pitman Res. Notes Math. Ser. 303, Longman Sci. Tech., Harlow, 1994, pp. 1–16.Suche in Google Scholar
[6] J. W. Barrett and W. B. Liu, Quasi-norm error bounds for the finite element approximation of a non-Newtonian flow, Numer. Math. 68 (1994), No. 4, 437–456.10.1007/s002110050071Suche in Google Scholar
[7] S. Bartels, Nonconforming discretizations of convex minimization problems and precise relations to mixed methods, Comput. Math. Appl. 93 (2021), 214–229.10.1016/j.camwa.2021.04.014Suche in Google Scholar
[8] S. Bartels and A. Kaltenbach, Error analysis for a Crouzeix–Raviart approximation of the obstacle problem, arXiv:2302.01646, 2023.10.1515/jnma-2022-0106Suche in Google Scholar
[9] S. Bartels and A. Kaltenbach, Explicit and efficient error estimation for convex minimization problems, Math. Comp. 92 (2023), No. 343, 2247–2279.10.1090/mcom/3821Suche in Google Scholar
[10] S. Bartels and M. Milicevic, Primal–dual gap estimators for a posteriori error analysis of nonsmooth minimization problems, ESAIM Math. Model. Numer. Anal. 54 (2020), No. 5, 1635–1660.10.1051/m2an/2019074Suche in Google Scholar
[11] L. Belenki, L. Diening, and C. Kreuzer, Optimality of an adaptive finite element method for the p-Laplacian equation, IMA J. Numer. Anal. 32 (2012), No. 2, 484–510.10.1093/imanum/drr016Suche in Google Scholar
[12] L. Berselli, L. Diening, and M. Růžička, Existence of strong solutions for incompressible fluids with shear dependent viscosities, Journal of Mathematical Fluid Mechanics 12 (2010), 101–132.10.1007/s00021-008-0277-ySuche in Google Scholar
[13] L. C. Berselli and M. Růžička, Global regularity for systems with p-structure depending on the symmetric gradient, Adv. Nonlinear Anal. 9 (2020), No. 1, 176–192.10.1515/anona-2018-0090Suche in Google Scholar
[14] S. C. Brenner, Two-level additive Schwarz preconditioners for nonconforming finite element methods, Mathematics of Computation 65 (1996), No. 215, 897–921.10.1090/S0025-5718-96-00746-6Suche in Google Scholar
[15] S. C. Brenner, Forty years of the Crouzeix–Raviart element, Numer. Methods Partial Differential Equations 31 (2015), No. 2, 367–396.10.1002/num.21892Suche in Google Scholar
[16] C. Carstensen, An adaptive mesh-refining algorithm allowing for an H1 stable L2 projection onto Courant finite element spaces, Constr. Approx. 20 (2004), No. 4, 549–564.10.1007/s00365-003-0550-5Suche in Google Scholar
[17] C. Carstensen, W. Liu, and N. Yan, A posteriori FE error control for p-Laplacian by gradient recovery in quasi-norm, Math. Comp. 75 (2006), No. 256, 1599–1616.10.1090/S0025-5718-06-01819-9Suche in Google Scholar
[18] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Society for Industrial and Applied Mathematics, 2002.10.1137/1.9780898719208Suche in Google Scholar
[19] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), No. R-3, 33–75.10.1051/m2an/197307R300331Suche in Google Scholar
[20] B. Dacorogna, Direct Methods in the Calculus of Variations, 2-nd ed., Applied Mathematical Sciences 78, Springer, New York, 2008.Suche in Google Scholar
[21] L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math. 20 (2008), No. 3, 523–556.10.1515/FORUM.2008.027Suche in Google Scholar
[22] L. Diening and C. Kreuzer, Linear convergence of an adaptive finite element method for the p-Laplacian equation, SIAM J. Numer. Anal. 46 (2008), No. 2, 614–638.10.1137/070681508Suche in Google Scholar
[23] L. Diening, D. Kröner, M. Růžička, and I. Toulopoulos, A local discontinuous Galerkin approximation for systems with p-structure, IMA J. Num. Anal. 34 (2014), No. 4, 1447–1488.10.1093/imanum/drt040Suche in Google Scholar
[24] L. Diening and M. Růžička, Interpolation operators in Orlicz–Sobolev spaces, Numer. Math. 107 (2007), No. 1, 107–129.10.1007/s00211-007-0079-9Suche in Google Scholar
[25] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), No. 3, 1106–1124.10.1137/0733054Suche in Google Scholar
[26] C. Ebmeyer, Global regularity in Nikolskij spaces for elliptic equations with p-structure on polyhedral domains, Nonlinear Analysis 63 (2005), No. 6-7, e1–e9.10.1016/j.na.2005.02.091Suche in Google Scholar
[27] C. Ebmeyer and W. B. Liu, Quasi-norm interpolation error estimates for finite element approximations of problems with p-structure, Numer. Math. 100 (2005), 233–258.10.1007/s00211-005-0594-5Suche in Google Scholar
[28] C. Ebmeyer, W.B. Liu, and M. Steinhauer, Global regularity in fractional order Sobolev spaces for the p-Laplace equation on polyhedral domains, Z. Anal. Anwendungen 24 (2005), No. 2, 353–374.10.4171/zaa/1245Suche in Google Scholar
[29] I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Classics in Applied Mathematics 28, SIAM, Philadelphia, PA, 1999.10.1137/1.9781611971088Suche in Google Scholar
[30] A. Ern and J. L. Guermond, Finite Elements I: Approximation and Interpolation, Texts in Applied Mathematics 1, Springer International Publishing, 2021.10.1007/978-3-030-56341-7Suche in Google Scholar
[31] E. Giusti, Direct Methods in the Calculus of Variations, World Scientific Publishing Co. Inc., River Edge, NJ, 2003.10.1142/9789812795557Suche in Google Scholar
[32] C. Helanow and J. Ahlkrona, Stabilized equal low-order finite elements in ice sheet modeling—accuracy and robustness, Comput. Geosci. 22 (2018), No. 4, 951–974.10.1007/s10596-017-9713-5Suche in Google Scholar
[33] J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science & Engineering 9 (2007), No. 3, 90–95.10.1109/MCSE.2007.55Suche in Google Scholar
[34] A. Kaltenbach and M. Růžička, Convergence analysis of a Local Discontinuous Galerkin approximation for nonlinear systems with Orlicz-structure, ESAIM: Mathematical Modelling and Numerical Analysis 57 (2023), No. 3, 1381–1411.10.1051/m2an/2023028Suche in Google Scholar
[35] A. Kaltenbach and M. Zeinhofer, The deep Ritz method for parametric p-Dirichlet problems, arXiv:2207.01894, 2022.Suche in Google Scholar
[36] D. J. Liu, A. Q. Li, and Z. R. Chen, Nonconforming FEMs for the p-Laplace problem, Adv. Appl. Math. Mech. 10 (2018), No. 6, 1365–1383.10.4208/aamm.OA-2018-0117Suche in Google Scholar
[37] W. Liu and N. Yan, Quasi-norm a priori and a posteriori error estimates for the nonconforming approximation of p-Laplacian, Numer. Math. 89 (2001), No. 2, 341–378.10.1007/PL00005470Suche in Google Scholar
[38] W. Liu and N. Yan, Quasi-norm local error estimators for p-Laplacian, SIAM J. Numer. Anal. 39 (2001), No. 1, 100–127.10.1137/S0036142999351613Suche in Google Scholar
[39] W. B. Liu, Degenerate quasilinear elliptic equations arising from bimaterial problems in elastic–plastic mechanics, Nonlinear Anal. 35 (1999), No. 4, Ser. A: Theory Methods, 517–529.10.1016/S0362-546X(98)00014-5Suche in Google Scholar
[40] A. Logg and G. N. Wells, DOLFIN: Automated Finite Element Computing, ACM Transactions on Mathematical Software 37 (2010), No. 2.10.1145/1731022.1731030Suche in Google Scholar
[41] J. Málek, J. Nečas, M. Rokyta, and M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Applied Mathematics and Mathematical Computation 13, Chapman & Hall, London, 1996.10.1007/978-1-4899-6824-1Suche in Google Scholar
[42] T. Malkmus, M. Růžička, S. Eckstein, and I. Toulopoulos, Generalizations of SIP methods to systems with p-structure, IMA J. Numer. Anal. 38 (2018), No. 3, 1420–1451.10.1093/imanum/drx040Suche in Google Scholar
[43] P. Oswald, On the robustness of the BPX-preconditioner with respect to jumps in the coefficients, Mathematics of Computation 68 (1999), No. 226, 633–650.10.1090/S0025-5718-99-01041-8Suche in Google Scholar
[44] C. Padra, A posteriori error estimators for nonconforming approximation of some quasi-Newtonian flows, SIAM Journal on Numerical Analysis 34 (1997), No. 4, 1600–1615.10.1137/S0036142994278322Suche in Google Scholar
[45] P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, In: Mathematical Aspects of Finite Element Methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975). Lecture Notes in Math., Vol. 606, 1977, pp. 292–315.10.1007/BFb0064470Suche in Google Scholar
[46] M. Růžička and L. Diening, Non-Newtonian fluids and function spaces, In: Nonlinear Analysis, Function Spaces and Applications, Proceedings of NAFSA 2006, Prague, Vol. 8, 2007, pp. 95–144.Suche in Google Scholar
[47] L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Mathematics of Computation 54 (1990), 483–493.10.1090/S0025-5718-1990-1011446-7Suche in Google Scholar
[48] Rüdiger Verfürth, A posteriori error estimates for nonlinear problems, Mathematics of Computation (1994), 445–475.10.1090/S0025-5718-1994-1213837-1Suche in Google Scholar
[49] E. Zeidler, Nonlinear Functional Analysis and its Applications. II/B Nonlinear Monotone Operators, Springer-Verlag, New York, 1990.10.1007/978-1-4612-0981-2Suche in Google Scholar
A Appendix
In this appendix, we give a proof of the inequalities (3.1).
Proposition A.1
Let ψ : ℝ⩾0 → ℝ⩾0 be an N-function such that ψ ∈ Δ2 ∩ ∇2. Then, for every
where cav > 0 depends only on Δ2(ψ), Δ2(ψ*) > 0 and the chunkiness ω0 > 0.
Proof
Owing to [8, Lem. A.2] together with [30, Lem. 12.1], there exists a constant cav > 0, depending only on the chunkiness ω0 > 0, such that
Using in (A.1) the Δ2-condition and convexity of ψa : ℝ⩾0 → ℝ⩾0, a ⩾ 0, in particular, Jensen’s inequality, and that suph>0 supT∈𝓣h card(𝓢h(T) ∖ ΓN) ⩽ c𝓣, where c𝓣 > 0 depends only on the chunkiness ω0 > 0, we find that
Eventually, using that supa⩾0 Δ2(ψa) < ∞, cf. [22, Lem. 22], we conclude the assertion.□
Corollary A.1
Let ψ : ℝ⩾0 → ℝ⩾0 be an N-function such that ψ ∈ Δ2 ∩ ∇2. Then, for every vh ∈
where c̃av > 0 depends only on Δ2(ψ), Δ2(ψ*) > 0 and the chunkiness ω0 > 0.
Proof
Follows from Proposition A.1, if we exploit that
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Contents
- Research Article
- Error analysis for a Crouzeix–Raviart approximation of the p-Dirichlet problem
- High order immersed hybridized difference methods for elliptic interface problems
- A posteriori error estimate for a WG method of H(curl)-elliptic problems
- Exploring numerical blow-up phenomena for the Keller–Segel–Navier–Stokes equations
- Corrigendum
- Corrigendum to: Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport
- Obituary
- Obituary for Professor Yuri Kuznetsov
Artikel in diesem Heft
- Contents
- Research Article
- Error analysis for a Crouzeix–Raviart approximation of the p-Dirichlet problem
- High order immersed hybridized difference methods for elliptic interface problems
- A posteriori error estimate for a WG method of H(curl)-elliptic problems
- Exploring numerical blow-up phenomena for the Keller–Segel–Navier–Stokes equations
- Corrigendum
- Corrigendum to: Numerical analysis for a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport
- Obituary
- Obituary for Professor Yuri Kuznetsov