Abstract
Here, we extend the finite distortion problem from bounded domains in ℝ2 to closed genus-zero surfaces in ℝ3 by a stereographic projection. Then, we derive a theoretical foundation for spherical equiareal parameterization between a simply connected closed surface
Funding statement: This work was partially supported by the Ministry of Science and Technology (MoST), the National Center for Theoretical Sciences, and the ST Yau Center in Taiwan. W.-W. Lin and T.-M. Huang were partially supported by MoST 110-2115-M-A49-004- and 110-2115-M-003-012-MY3, respectively.
References
[1] D. X. Gu’s home page, http://www3.cs.stonybrook.edu/~gu/, 2017.Suche in Google Scholar
[2] GitHub—alecjacobson/common-3d-test-models: Repository containing common 3D test models in original format with original source if known and obj mesh, https://github.com/alecjacobson/common-3d-test-models, 2021.Suche in Google Scholar
[3] L. V. Ahlfors, Lectures on Quasiconformal Mappings, Vol. 38, Amer. Math. Soc., 2006.10.1090/ulect/038Suche in Google Scholar
[4] K. Astala, T. Iwaniec, and G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48), Princeton University Press, 2008.10.1515/9781400830114Suche in Google Scholar
[5] K. Astala, T. Iwaniec, G. J. Martin, and J. Onninen, Extremal mappings of finite distortion, Proc. Lond. Math. Soc. 91 (2005), No. 3, 655–702.10.1112/S0024611505015376Suche in Google Scholar
[6] U. Baid, S. Ghodasara, and M. Bilelloetc, The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification, 2021.Suche in Google Scholar
[7] S. Bakas, H. Akbari, and A. Sotirasetc, Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features, Sci. Data 4 (2017), No. 1, 170117.10.1038/sdata.2017.117Suche in Google Scholar PubMed PubMed Central
[8] P. T. Choi, K. C. Lam, and L. M. Lui, FLASH: Fast Landmark Aligned Spherical Harmonic parameterization for Genus-0 closed brain surfaces, SIAM J. Imaging Sci. 8 (2015), No. 1, 67–94.10.1137/130950008Suche in Google Scholar
[9] I. Fonseca and W. Gangbo, Local invertibility of Sobolev functions, SIAM J. Math. Anal. 26 (1995), No. 2, 280–304.10.1137/S0036141093257416Suche in Google Scholar
[10] X. Gu, Y.Wang, T. F. Chan, P. M. Thompson, and S.-T. Yau, Genus zero surface conformal mapping and its application to brain surface mapping, IEEE Trans. Med. Imaging 23 (2004), No. 8, 949–958.10.1109/TMI.2004.831226Suche in Google Scholar PubMed
[11] P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven, Göttinger Nachr. 1907 (1907), 191–210.Suche in Google Scholar
[12] B. Lévy, S. Petitjean, N. Ray, and J. Maillot, Least squares conformal maps for automatic texture atlas generation, ACM Trans. Graph. 21 (2002), No. 3, 362–371.10.1145/566654.566590Suche in Google Scholar
[13] W. H. Liao, T. M. Huang, W. W. Lin, and M. H. Yueh, Convergence analysis of Dirichlet energy minimization for spherical conformal parameterizations, arXiv:2206.15167, 2022.Suche in Google Scholar
[14] L. M. Lui, X. D. Gu, and S. T. Yau, Convergence of an iterative algorithm for Teichmüller maps via harmonic energy optimization, Math. Comp. 84 (2015), No. 296, 2823–2842.10.1090/S0025-5718-2015-02962-7Suche in Google Scholar
[15] H. Poincaré, Sur l’uniformisation des fonctions analytiques, Acta Math. 31 (1908), 1–63.10.1007/BF02415442Suche in Google Scholar
[16] B. Springborn, P. Schröder, and U. Pinkall, Conformal equivalence of triangle meshes, ACM Trans. Graph. 27 (2008), No. 3, 1–11.10.1145/1360612.1360676Suche in Google Scholar
[17] K. Su, L. Cui, K. Qian, N. Lei, J. Zhang, M. Zhang, and X. D. Gu, Area-preserving mesh parameterization for poly-annulus surfaces based on optimal mass transportation, Comput. Aided Geom. Design 46 (2016), 76–91.10.1016/j.cagd.2016.05.005Suche in Google Scholar
[18] S. Vodop’yanov and V. Gol’dshtein, Quasiconformal mappings and spaces of functions with generalized first derivatives, Sib. Math. J. 17 (1976), No. 3, 399–411.10.1007/BF00967859Suche in Google Scholar
[19] S. Yoshizawa, A. Belyaev, and H.-P. Seidel, A fast and simple stretch-minimizing mesh parameterization, In: Proceedings Shape Modeling Applications, 2004, IEEE, 2004, pp. 200–208.10.1109/SMI.2004.1314507Suche in Google Scholar
[20] M.-H. Yueh, T. Li, W.-W. Lin, and S.-T. Yau, A novel algorithm for volume-preserving parameterizations of 3-manifolds, SIAM J. Imag. Sci. 12 (2019), No. 2, 1071–1098.10.1137/18M1201184Suche in Google Scholar
[21] M.-H. Yueh, W.-W. Lin, C.-T.Wu, and S.-T. Yau, A novel stretch energy minimization algorithm for equiareal parameterizations, J. Sci. Comput. 78 (2019), No. 3, 1353–1386.10.1007/s10915-018-0822-7Suche in Google Scholar
[22] X. Zhao, Z. Su, X. D. Gu, A. Kaufman, J. Sun, J. Gao, and F. Luo, Area-preservation mapping using optimal mass transport, IEEE Trans. Vis. Comput. Graph. 19 (2013), No. 12, 2838–2847.10.1109/TVCG.2013.135Suche in Google Scholar PubMed
[23] G. Zou, J. Hu, X. D. Gu, and J. Hua, Authalic parameterization of general surfaces using Lie advection, IEEE Trans. Vis. Comput. Graph. 17 (2011), No. 12, 2005–2014.10.1109/TVCG.2011.171Suche in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Fundamental theory and R-linear convergence of stretch energy minimization for spherical equiareal parameterization
- Entropy stable non-oscillatory fluxes: An optimized wedding of entropy conservative flux with non-oscillatory flux
- Diffusion of tangential tensor fields: numerical issues and influence of geometric properties
- Unifying a posteriori error analysis of five piecewise quadratic discretisations for the biharmonic equation
Artikel in diesem Heft
- Frontmatter
- Fundamental theory and R-linear convergence of stretch energy minimization for spherical equiareal parameterization
- Entropy stable non-oscillatory fluxes: An optimized wedding of entropy conservative flux with non-oscillatory flux
- Diffusion of tangential tensor fields: numerical issues and influence of geometric properties
- Unifying a posteriori error analysis of five piecewise quadratic discretisations for the biharmonic equation