Abstract
We investigate a suitable application of Model Order Reduction (MOR) techniques for the numerical approximation of Turing patterns, that are stationary solutions of reaction–diffusion PDE (RD-PDE) systems. We show that solutions of surrogate models built by classical Proper Orthogonal Decomposition (POD) exhibit an unstable error behaviour over the dimension of the reduced space. To overcome this drawback, first of all, we propose a POD-DEIM technique with a correction term that includes missing information in the reduced models. To improve the computational efficiency, we propose an adaptive version of this algorithm in time that accounts for the peculiar dynamics of the RD-PDE in presence of Turing instability. We show the effectiveness of the proposed methods in terms of accuracy and computational cost for a selection of RD systems, i.e., FitzHugh–Nagumo, Schnakenberg and the morphochemical DIB models, with increasing degree of nonlinearity and more structured patterns.
-
Code availability
The MATLAB source code of the implementations used to compute the presented results can be downloaded from https://github.com/alessandroalla/PODcorrection.
Acknowledgment
A.A., A.M., and I.S. are members of the INdAM-GNCS activity group. The work of I.S. is supported by the MIUR (Italian Ministry of University and Research) through the project PRIN 2020, ‘Mathematics for Industry 4.0’, project No. 2020F3NCPX.
References
[1] A. Alla and M. Falcone, A time-adaptive POD method for optimal control problems, IFAC Proc. Volumes 46 (2013), No. 26, 245–250.10.3182/20130925-3-FR-4043.00042Suche in Google Scholar
[2] A. Alla and J. N. Kutz, Randomized model order reduction, Adv. Comput. Math. 45 (2019), 1251–1271.10.1007/s10444-018-09655-9Suche in Google Scholar
[3] D. Amsallem and C. Farhat, Stabilization of projection-based reduced-order models, Int. J. Numer. Methods Eng. 91 (2012), No. 4, 358–377.10.1002/nme.4274Suche in Google Scholar
[4] U. M. Ascher, S. J. Ruuth, and B. T. R.Wetton, Implicit–explicit methods for time dependent PDE’s, SIAM J. Numer. Anal. 32 (1995), No. 3, 797–823.10.1137/0732037Suche in Google Scholar
[5] U. M. Ascher, K. van den Doel, H. Huang, and B. F. Svaiter, Gradient descent and fast artificial time integration, Math. Modelling Numer. Anal. 43 (2009), No. 4, 689–708.10.1051/m2an/2009025Suche in Google Scholar
[6] F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza, Supremizer stabilization of POD–Galerkin approximation of parametrized steady incompressible Navier–Stokes equations, Int. J. Numer. Methods Eng. 102 (2015), No. 5, 1136–1161.10.1002/nme.4772Suche in Google Scholar
[7] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique 339 (2004), 667–672.10.1016/j.crma.2004.08.006Suche in Google Scholar
[8] R. Barreira, C. M. Elliott, and A. Madzvamuse, The surface finite element method for pattern formation on evolving biological surfaces, J. Math. Biology 63 (2011), No. 6, 1095–1119.10.1007/s00285-011-0401-0Suche in Google Scholar PubMed
[9] P. Benner and L. Feng, Model order reduction for coupled problems (Survey), Applied and Comput. Math. 14 (2015), 3–22.Suche in Google Scholar
[10] P. Benner, S. Gugercin, and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev. 57 (2015), 483–531.10.1137/130932715Suche in Google Scholar
[11] M. Benosman, J. Borggaard, O. San, and B. Kramer, Learning-based robust stabilization for reduced-order models of 2D and 3D Boussinesq equations, Applied Math. Modelling 49 (2017), 162–181.10.1016/j.apm.2017.04.032Suche in Google Scholar
[12] B. Bozzini, G. Gambino, D. Lacitignola, S. Lupo, M. Sammartino, and I. Sgura, Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth, Computers & Mathematics with Applications 70 (2015), No. 8, 1948–1969.10.1016/j.camwa.2015.08.019Suche in Google Scholar
[13] B. Bozzini, D. Lacitignola, and I. Sgura, Spatio-temporal organization in alloy electrodeposition: a morphochemical mathematical model and its experimental validation, J. Solid State Electrochemistry 17 (2013), No. 2, 467–479.10.1007/s10008-012-1945-7Suche in Google Scholar
[14] B. Bozzini, A. Monti, and I. Sgura, Model-reduction techniques for PDE models with Turing type electrochemical phase formation dynamics, Appl. Eng. Sci. 8 (2021), 1–10.10.1016/j.apples.2021.100074Suche in Google Scholar
[15] M. A. J. Chaplain, M. Ganesh, and I. G. Graham, Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth, J. Math. Biology 42 (2001), No. 5, 387–423.10.1007/s002850000067Suche in Google Scholar PubMed
[16] M. A. J. Chaplain and A. Gerisch, Robust numerical methods for taxis–diffusion–reaction systems: applications to biomedical problems, Math. Comp. Modelling 43 (2006), 49–75.10.1016/j.mcm.2004.05.016Suche in Google Scholar
[17] M. A. J. Chaplain and J. A. Sherratt, A new mathematical model for avascular tumour growth, J. Math. Biol. 43 (2001), 291–312.10.1007/s002850100088Suche in Google Scholar PubMed
[18] S. Chatarantabut and D. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput. 32 (2010), 2737–2764.10.1137/090766498Suche in Google Scholar
[19] M. C. D’Autilia, I. Sgura, and V. Simoncini, Matrix-oriented discretization methods for reaction–diffusion PDEs: Comparisons and applications, Comput. Math. Appl. 79 (2020), 2067–2085.10.1016/j.camwa.2019.10.020Suche in Google Scholar
[20] Z. Drmac and S. Gugercin, A new selection operator for the discrete empirical interpolation method –improved a priori error bound and extensions, SIAM J. Sci. Comput. 38 (2016), A631–A648.10.1137/15M1019271Suche in Google Scholar
[21] G. Gambino, M. C. Lombardo, G. Rubino, and M. Sammartino, Pattern selection in the 2D FitzHugh–Nagumo model, Ricerche di Matematica 68 (2019), 535–549.10.1007/s11587-018-0424-6Suche in Google Scholar
[22] D. A. Garzon-Alvarado, A. M. R. Martinez, and D. L. L. Segrera, A model of cerebral cortex formation during fetal development using reaction–diffusion–convection equations with Turing space parameters, Computer Methods and Programs in Biomedicine 104 (2011), No. 3, 489–497.10.1016/j.cmpb.2011.07.001Suche in Google Scholar PubMed
[23] E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak, and E. Meron, Ecosystem engineers: From pattern formation to habitat creation, Phys. Rev. Lett. 93 (2004), 098105.10.1103/PhysRevLett.93.098105Suche in Google Scholar PubMed
[24] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, 1996.Suche in Google Scholar
[25] C. Gräßle, M. Hinze, and S. Volkwein, Snapshot-Based Methods and Algorithms, Volume 2 of Model Order Reduction, De Gruyter, 2020.Suche in Google Scholar
[26] P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge Monographs on Mechanics, Cambridge University Press, 1996.10.1017/CBO9780511622700Suche in Google Scholar
[27] W. Hundsdorfer and J. Verwer, Numerical solution of time-dependent advection–diffusion–reaction equations, Springer Series in Computational Mathematics 33 (2003).10.1007/978-3-662-09017-6Suche in Google Scholar
[28] B. Karasözen, M. Uzunca, and T. Küçükseyhan, Model order reduction for pattern formation in FitzHugh–Nagumo equations. In: Numerical Mathematics and Advanced Applications ENUMATH 2015 (Eds. B. Karasözen, M. Manguoğlu, M. Tezer-Sezgin, S. Göktepe, and Ö. Uğur), Springer, Cham, 2016, pp. 369–377.10.1007/978-3-319-39929-4_35Suche in Google Scholar
[29] B. Karasözen, G. Mülayim, M. Uzunca, and S. Yıldız, Reduced order modelling of nonlinear cross-diffusion systems, Applied Mathematics and Computation 401 (2021), 126058.10.1016/j.amc.2021.126058Suche in Google Scholar
[30] G. Kirsten, Multilinear POD-DEIM model reduction for 2D and 3D semilinear systems of differential equations, J. Comput. Dynamics (2021), 1–25.10.3934/jcd.2021025Suche in Google Scholar
[31] G. Kirsten and V. Simoncini, A matrix-oriented POD-DEIM algorithm applied to nonlinear differential matrix equations, arXiv:2006.13289, 2021.Suche in Google Scholar
[32] K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition, J. Optimization Theory and Applications 102 (1999), 345–371.10.1023/A:1021732508059Suche in Google Scholar
[33] J. N. Kutz, S. L. Brunton, B.W. Brunton, and J. L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, SIAM, 2016.10.1137/1.9781611974508Suche in Google Scholar
[34] D. Lacitignola, B. Bozzini, M. Frittelli, and I. Sgura, Turing pattern formation on the sphere for a morphochemical reaction–diffusion model for electrodeposition, Communications in Nonlinear Science and Numerical Simulation 48 (2017), 484–508.10.1016/j.cnsns.2017.01.008Suche in Google Scholar
[35] D. Lacitignola, B. Bozzini, and I. Sgura, Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, Europ. J. Appl. Math. 26 (2015), No. 2, 143–173.10.1017/S0956792514000370Suche in Google Scholar
[36] J. Lefèvre and J.-F. Mangin, A reaction–diffusion model of human brain development, PLoS Comput. Biology 6 (2010), No. 4, e1000749.10.1371/journal.pcbi.1000749Suche in Google Scholar PubMed PubMed Central
[37] A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction–diffusion systems on fixed and growing domains, J. Comput. Phys. 214 (2006), No. 2, 239–263.10.1016/j.jcp.2005.09.012Suche in Google Scholar
[38] A. Madzvamuse, A. J.Wathen, and P. K. Maini, A moving grid finite element method applied to a model biological pattern generator, J. Comput. Physics 190 (2003), No. 2, 478–500.10.1016/S0021-9991(03)00294-8Suche in Google Scholar
[39] P. Maini and H. Othmer, Mathematical Models for Biological Pattern Formation. The IMA Volumes in Mathematics and its Applications - Frontiers in application of Mathematics, Springer-Verlag, New York, 2001.10.1007/978-1-4613-0133-2Suche in Google Scholar
[40] H. Malchow, S. Petrowski, and E. Venturino, Spatio Temporal Patterns in Ecology and Epidemiology, Chapman & Hall, UK, 2008.10.1201/9781482286137Suche in Google Scholar
[41] T. T. Marquez-Lago and P. Padilla, A selection criterion for patterns in reaction–diffusion systems, Theor. Biol. Med. Modelling 11 (2014), No. 7, 1093–1121.10.1186/1742-4682-11-7Suche in Google Scholar PubMed PubMed Central
[42] C. Mou, H. Liu, D. R.Wells, and T. Iliescu, Data-driven correction reduced order models for the quasi-geostrophic equations: a numerical investigation, Int. J. Comut. Fluid Dyn. 34 (2020), 147–159.10.1080/10618562.2020.1723556Suche in Google Scholar
[43] J. D. Murray, Mathematical Biology II –Spatial Models and Biomedical Applications. Interdisciplinary Applied Mathematics, Vol. 18, Springer-Verlag, Berlin–Heidelberg, 2003.10.1080/10618562.2020.1723556Suche in Google Scholar
[44] H. Müller and S. Volkwein, Model reduction by proper orthogonal decomposition for lambda–omega systems, In: Proc. of European Conf. on Computational Fluid Dynamics (ECCOMAS CFD), Egmont aan Zee, 2006 (Eds. P.Wesseling, E. Onate, and J. Periaux), 2006.10.1007/b98869Suche in Google Scholar
[45] M. G. Neubert and H. Caswell, Alternatives to resilience for measuring the responses of ecological systems to perturbations, Ecology, The Ecological Society of America 78 (1997), 653–665.10.1890/0012-9658(1997)078[0653:ATRFMT]2.0.CO;2Suche in Google Scholar
[46] M. G. Neubert, H. Caswell, and J. D. Murray, Transient dynamics and pattern formation: reactivity is necessary for Turing instabilities, Math. Biosciences 175 (2002), 1–11.10.1016/S0025-5564(01)00087-6Suche in Google Scholar
[47] K. J. Painter, Mathematical models for chemotaxis and their applications in self-organisation phenomena, J. Theoretical Biology 481 (2019), 162–182.10.1016/j.jtbi.2018.06.019Suche in Google Scholar PubMed
[48] B. Peherstorfer, D. Butnaru, K. Willcox, and H. Bungartz, Localized discrete empirical interpolation method, SIAM J. Sci. Comp. 36 (2014), A168–A192.10.1137/130924408Suche in Google Scholar
[49] T. Reis and T. Stykel, Stability analysis and model order reduction of coupled systems, Mathematical and Computer Modelling of Dynamical Systems 13 (2007), No. 5, 413–436.10.1080/13873950701189071Suche in Google Scholar
[50] T. Reis and T. Stykel, A survey on model reduction of coupled systems, In: Model Order Reduction: Theory, Research Aspects and Applications, Springer, Berlin–Heidelberg, 2008, pp. 133–155.10.1007/978-3-540-78841-6_7Suche in Google Scholar
[51] S. J. Ruuth, Implicit–explicit methods for reaction–diffusion problems in pattern formation, J. Math. Biology 34 (1995), No. 2, 148–176.10.1007/BF00178771Suche in Google Scholar
[52] G. Settanni and I. Sgura, Devising efficient numerical methods for oscillating patterns in reaction–diffusion systems, J. Comput. Appl. Math. 292 (2016), 674–693.10.1016/j.cam.2015.04.044Suche in Google Scholar
[53] I. Sgura, B. Bozzini, and D. Lacitignola, Numerical approximation of Turing patterns in electrodeposition by ADI methods, J. Comput. Appl. Math. 236 (2012), No. 16, 4132–4147.10.1016/j.cam.2012.03.013Suche in Google Scholar
[54] I. Sgura, A. Lawless, and B. Bozzini, Parameter estimation for a morphochemical reaction–diffusion model of electrochemical pattern formation, Inverse Probl. Sci. Eng. 27 (2019), 618–647.10.1080/17415977.2018.1490278Suche in Google Scholar
[55] J. Sherratt, Turing pattern in desert, In: How the World Computes (Eds. S. B. Cooper and A. Dawar), Lecture Notes in Computer Science, Vol. 7318, 2012.10.1007/978-3-642-30870-3_67Suche in Google Scholar
[56] L. Sirovich, Turbulence and the dynamics of coherent structures, Parts I-II, Quarterly of Applied Mathematics (1987), 561–59.10.1090/qam/910462Suche in Google Scholar
[57] D.Wells, Z.Wang, X. Xie, and T. Iliescu, An evolve-then-filter regularized reduced order model for convection-dominated flows, Int. J. Numer. Methods Fluids 84 (2017), No. 10, 598–615.10.1002/fld.4363Suche in Google Scholar
[58] X. Xie, M. Mohebujjaman, L. G. Rebholz, and T. Iliescu, Data-driven filtered reduced order modeling of fluid flows, SIAM J. Sci. Com-put. 40 (2018), B834–B857.10.1137/17M1145136Suche in Google Scholar
[59] X. Xie, C.Webster, and T. Iliescu, Closure learning for nonlinear model reduction using deep residual neural network, Fluids 5 (2020), No. 1, 39.10.3390/fluids5010039Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A subspace of linear nonconforming finite element for nearly incompressible elasticity and Stokes flow
- An all Mach number finite volume method for isentropic two-phase flow
- Adaptive POD-DEIM correction for Turing pattern approximation in reaction–diffusion PDE systems
- The deal.II Library, Version 9.5
Artikel in diesem Heft
- Frontmatter
- A subspace of linear nonconforming finite element for nearly incompressible elasticity and Stokes flow
- An all Mach number finite volume method for isentropic two-phase flow
- Adaptive POD-DEIM correction for Turing pattern approximation in reaction–diffusion PDE systems
- The deal.II Library, Version 9.5