Abstract
Bounds on the spectrum of Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients of the convergence analysis of FETI (finite element tearing and interconnecting) based domain decomposition methods. Here we give bounds on the regular condition number of Schur complements of ‘floating’ clusters arising from the discretization of 3D Laplacian on a cube decomposed into cube subdomains. The results show that the condition number of the cluster defined on a fixed domain decomposed into m × m × m cube subdomains connected by face and optionally edge averages increases proportionally to m. The estimates support scalability of unpreconditioned H-FETI-DP (hybrid FETI dual-primal) method. Though the research is most important for the solution of variational inequalities, the results of numerical experiments indicate that unpreconditioned H-FETI-DP with large clusters can be useful also for the solution of huge linear problems.
-
funding This work was supported by The Ministry of Education, Youth and Sports from the National Programme of Sustainability (NPS II) project ‘IT4Innovations excellence in science – LQ1602’ and by the IT4Innovations infrastructure which is supported from the Large Infrastructures for Research, Experimental Development and Innovations project ‘e-INFRA CZ–LM2018140’.
References
[1] S. C. Brenner, The condition number of the Schur complement in domain decomposition, Numer. Math. 83 (1999), 187–203.10.1007/s002110050446Suche in Google Scholar
[2] T. Brzobohatý, M. Jarošová, T. Kozubek, M. Menšík, and A. Markopoulos, The hybrid total FETI method. In: Proc. of the 3rd Int. Conf. on Parallel, Distributed, Grid, and Cloud Computing for Engineering, Civil-Comp Press, Stirlingshire, 2013, paper 2.Suche in Google Scholar
[3] Z. Dostál and D. Horák, Theoretically supported scalable FETI for numerical solution of variational inequalities, SIAM J. Numer. Anal. 45 (2007), No. 2, 500–513.10.1137/050639454Suche in Google Scholar
[4] Z. Dostál, D. Horák, T. Brzobohatý, and P. Vodstrčil, Bounds on the spectra of Schur complements of large H-TFETI clusters for 2D Laplacian and applications, Numer. Lin. Agebra Appl. 28 (2021), No. 2, e2344.10.1002/nla.2344Suche in Google Scholar
[5] Z. Dostál, D. Horák, and R. Kučera., Total FETI – an easier implementable variant of the FETI method for numerical solution of elliptic PDE, Commun. Numer. Methods Engrg. 22 (2006), 1155–1162.10.1002/cnm.881Suche in Google Scholar
[6] Z. Dostál, T. Kozubek, M. Sadowská, and V. Vondrák, Scalable Algorithms for Contact Problems, AMM 36, Springer, New York, 2016.10.1007/978-1-4939-6834-3Suche in Google Scholar
[7] Z. Dostál, T. Kozubek, and O. Vlach, Reorthogonalization based stiffness preconditioning in FETI algorithms with applications to variational inequalities, Numer. Lin. Algebra Appl. 22 (2015), No. 6, 987–998.10.1002/nla.1994Suche in Google Scholar
[8] ESPRESO – highly parallel framework for engineering applications, http://numbox.it4i.cz.Suche in Google Scholar
[9] C. Farhat, M. Lesoinne, P. Le Tallec, K. Pierson, and D. Rixen, A dual-primal unified FETI method I – a faster alternative to the two-level FETI method, Int. J. Numer. Methods Engrg. 50 (2001), No. 7, 1524–1544.10.1002/nme.76Suche in Google Scholar
[10] C. Farhat, M. Lesoinne, and K. Pierson, A scalable dual-primal domain decomposition method, Numer. Lin. Agebra Appl. 7 (2000), No. 7-8, 687–714.10.1002/1099-1506(200010/12)7:7/8<687::AID-NLA219>3.0.CO;2-SSuche in Google Scholar
[11] C. Farhat, J. Mandel, and F.-X. Roux, Optimal convergence properties of the FETI domain decomposition method, Comput. Methods Appl. Mech. Engrg. 115 (1994), 365–385.10.1016/0045-7825(94)90068-XSuche in Google Scholar
[12] C. Farhat and F.-X. Roux, A method of finite element tearing and interconnecting and its parallel solution algorithm, Int. J. Numer. Methods Engrg. 32 (1991), 1205–1227.10.1002/nme.1620320604Suche in Google Scholar
[13] C. Farhat and F.-X. Roux, An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems, SIAM J. Sci. Comput. 13 (1992), 379–396.10.1137/0913020Suche in Google Scholar
[14] G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins Univ. Press, 4th ed., 2013.10.56021/9781421407944Suche in Google Scholar
[15] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991.10.1017/CBO9780511840371Suche in Google Scholar
[16] I. C. Ipsen and C. D. Mayer, The angle between complementary subspaces, Amer. Math. Monthly 102 (1995), No. 10, 904–911.10.1080/00029890.1995.12004683Suche in Google Scholar
[17] M. A. Klawonn, M. Kühn, and O. Rheinbach, Coarse spaces for FETI-DP and BDDC methods for heterogeneous problems: connecting of deflation and generalized transformation-of-bases approach, Electron. Trans. Numer. Anal. 52 (2020), 43–76.10.1553/etna_vol52s43Suche in Google Scholar
[18] A. Klawonn, M. Lanser, and O. Rheinbach, Toward extremely scalable nonlinear domain decomposition methods for elliptic partial differential equations, SIAM J. Sci. Comput. 37 (2015), No. 6, C667–C696.10.1137/140997907Suche in Google Scholar
[19] A. Klawonn and O. Rheinbach, A parallel implementation of dual-primal FETI methods for three dimensional linear elasticity using a transformation of basis, SIAM J. Sci. Comput. 28 (2006), No. 5, 1886–1906.10.1137/050624364Suche in Google Scholar
[20] A. Klawonn and O. Rheinbach, A hybrid approach to 3-level FETI, PAMM 8 (2008), 10841–10843.10.1002/pamm.200810841Suche in Google Scholar
[21] A. Klawonn and O. Rheinbach, Highly scalable parallel domain decomposition methods with an application to biomechanics, Z. Angew. Math. Mech. 90 (2010), No. 1, 5–32.10.1002/zamm.200900329Suche in Google Scholar
[22] A. Klawonn, O. B. Widlund, and M. Dryja, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients, SIAM J. Numer. Anal. 40 (2002), 159–179.10.1137/S0036142901388081Suche in Google Scholar
[23] A. Klawonn and O. Widlund, Dual-primal FETI method for linear elasticity, Commun. Pure Appl. Math. LIX (2006), 1523–1572.10.1002/cpa.20156Suche in Google Scholar
[24] J. Lee, Domain decomposition methods for auxiliary linear problems of an elliptic variational inequality, In: Domain Decomposition Methods in Science and Engineering XX, (Eds. R. Bank et al.), Lecture Notes in Computational Science and Engineering, Vol. 91, Springer, 2013, pp. 319–326.10.1007/978-3-642-35275-1_35Suche in Google Scholar
[25] J. Lee, Two domain decomposition methods for auxiliary linear problems for a multibody variational inequality, SIAM J. Sci. Comput. 35 (2013), No. 3, 1350–1375.10.1137/100783753Suche in Google Scholar
[26] J. Li and O. B. Widlund, FETI-DP, BDDC, and block Cholesky method, Int. J. Num. Methods Engrg. 66 (2006), 250–271.10.1002/nme.1553Suche in Google Scholar
[27] C. D. Mayer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000.10.1137/1.9780898719512Suche in Google Scholar
[28] A. Markopoulos, L. Říha, T. Brzobohatý, O. Meca, R. Kučera, and T. Kozubek, The HTFETI method variant gluing cluster subdomains by kernel matrices representing the rigid body motions. In: Proc. of DDM24 (Eds. P. E. Bjørstadt et al.), LNCSE, Vol. 125, Springer, Cham, 2018, pp. 543–551.10.1007/978-3-319-93873-8_52Suche in Google Scholar
[29] C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale Problems, Springer, Heidelberg, 2013.10.1007/978-3-642-23588-7Suche in Google Scholar
[30] F.-X. Roux, Spectral analysis of interface operators associated with the preconditioned saddle-point principle domain decomposition method. In: Proc. of the Fifth International Conf. on Domain Decomposition Methods (Eds. D. E. Keyes, T. F. Chan, G. Meurant, J. S. Scroggs, R. G. Voigt), SIAM, Philadelphia, 1992, pp. 73–90.Suche in Google Scholar
[31] K. Schäcke, On the Kronecker product, MSc. Thesis, University of Waterloo, 2004.Suche in Google Scholar
[32] G. W. Stewart, Matrix Algorithms. Vol. I, Basic Decompositions, SIAM, Philadelphia, 1998.10.1137/1.9781611971408Suche in Google Scholar
[33] A. Toselli and O. B. Widlund, Domain Decomposition Methods – Algorithms and Theory, Springer Series on Computational Mathematics, Vol. 34, Springer, Berlin, 2005.10.1007/b137868Suche in Google Scholar
[34] P. Vodstrčil, J. Bouchala, M. Jarošová, and Z. Dostál, On conditioning of Schur complements of H-TFETI clusters for 2D problems governed by Laplacian, Appl. Math. 62 (2017), No. 6, 699–718.10.21136/AM.2017.0193-17Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A reduced basis method for fractional diffusion operators II
- Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems
- Entropy stabilization and property-preserving limiters for ℙ1 discontinuous Galerkin discretizations of scalar hyperbolic problems
- Acceleration of nonlinear solvers for natural convection problems
Artikel in diesem Heft
- Frontmatter
- A reduced basis method for fractional diffusion operators II
- Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems
- Entropy stabilization and property-preserving limiters for ℙ1 discontinuous Galerkin discretizations of scalar hyperbolic problems
- Acceleration of nonlinear solvers for natural convection problems