Abstract
We present a novel numerical scheme to approximate the solution map s ↦ u(s) := 𝓛–sf to fractional PDEs involving elliptic operators. Reinterpreting 𝓛–s as an interpolation operator allows us to write u(s) as an integral including solutions to a parametrized family of local PDEs. We propose a reduced basis strategy on top of a finite element method to approximate its integrand. Unlike prior works, we deduce the choice of snapshots for the reduced basis procedure analytically. The integral is interpreted in a spectral setting to evaluate the surrogate directly. Its computation boils down to a matrix approximation L of the operator whose inverse is projected to the s-independent reduced space, where explicit diagonalization is feasible. Exponential convergence rates are proven rigorously.
A second algorithm is presented to avoid inversion of L. Instead, we directly project the matrix to the subspace, where its negative fractional power is evaluated. A numerical comparison with the predecessor highlights its competitive performance.
Acknowledgment
The authors acknowledge support from the Austrian Science Fund (FWF) through grant No. F65 and W1245.
References
[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, 1964.10.1115/1.3625776Suche in Google Scholar
[2] M. Ainsworth and C. Glusa, Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver, Comput. Methods Appl. Mech. Engrg. 327 (2017), 4–35.10.1016/j.cma.2017.08.019Suche in Google Scholar
[3] M. Ainsworth and C. Glusa, Hybrid finite element – spectral method for the fractional Laplacian: Approximation theory and efficient solver, SIAM J. Sci. Comput. 40 (2018), No. 4, A2383–A2405.10.1137/17M1144696Suche in Google Scholar
[4] M. Ainsworth and C. Glusa, Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains. In: Contemporary Computational Mathematics-A, Springer, Cham, 2018, pp. 17–57.10.1007/978-3-319-72456-0_2Suche in Google Scholar
[5] V. Anh, M. Ilić, F. Liu, and I. Turner, Numerical approximation of a fractional-in-space diffusion equation (II) – with nonhomogeneous boundary conditions, Fract. Calculus Appl. Anal. 9 (2006), No. 4, 333–349.Suche in Google Scholar
[6] H. Antil and S. Bartels, Spectral approximation of fractional PDEs in image processing and phase field modeling, Comput. Methods Appl. Math. 17 (2017), No. 4, 661–678.10.1515/cmam-2017-0039Suche in Google Scholar
[7] H. Antil, Y. Chen, and A. C. Narayan, Reduced basis methods for fractional Laplace equations via extension, SIAM J. Sci. Comp. 41 (2018), A3552–A3575.10.1137/18M1204802Suche in Google Scholar
[8] H. Antil and C. Rautenberg, Sobolev spaces with non-Muckenhoupt weights, fractional elliptic operators, and applications, SIAM J. Math. Analysis 51 (2018), No. 3, 2479–2503.10.1137/18M1224970Suche in Google Scholar
[9] D. Applebaum, Lévy processes – from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), No. 11, 1336–1347.Suche in Google Scholar
[10] L. Banjai, J. M. Melenk, R. H. Nochetto, E. Otárola, A. J. Salgado, and C. Schwab, Tensor FEM for spectral fractional diffusion, Found. Comput. Math. 19 (2019), 901–962.10.1007/s10208-018-9402-3Suche in Google Scholar
[11] P. W. Bates, On some nonlocal evolution equations arising in materials science, Nonlin. Dynamics Evolution Equ. 48 (2006), 13–52.10.1090/fic/048/02Suche in Google Scholar
[12] D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, Application of a fractional advection–dispersion equation, Soil Sci. Society Amer. J. 36 (2000), No. 6, 1403–1412.10.1029/2000WR900031Suche in Google Scholar
[13] H. Berestycki, J. Roquejoffre, and L. Rossi, The periodic patch model for population dynamics with fractional diffusion, Discrete Continuous Dynamical Systems S 4 (2011), No. 1, 1–13.10.3934/dcdss.2011.4.1Suche in Google Scholar
[14] J. Bergh and J. Lofstrom, Interpolation Spaces, Springer-Verlag, Berlin, 1976.10.1007/978-3-642-66451-9Suche in Google Scholar
[15] A. Bonito, J. Borthagaray, R. H. Nochetto, E. Otarola, and A. J. Salgado, Numerical methods for fractional diffusion, Comput. Visual. Sci. 19 (2018), 19–46.10.1007/s00791-018-0289-ySuche in Google Scholar
[16] A. Bonito, D. Guignard, and A. R. Zhang, Reduced basis approximations of the solutions to fractional diffusion problems, Preprint arXiv:1905.01754, 2019.10.1515/jnma-2019-0053Suche in Google Scholar
[17] A. Bonito, W. Lei, and J. E. Pasciak, On sinc quadrature approximations of fractional powers of regularly accretive operators, J. Numer. Math. 27 (2018), No. 2, 57–68.10.1515/jnma-2017-0116Suche in Google Scholar
[18] A. Bonito and J. E. Pasciak, Numerical approximation of fractional powers of elliptic operators, Math. Comput. 84 (2015), 2083–2110.10.1090/S0025-5718-2015-02937-8Suche in Google Scholar
[19] J. H. Bramble, Multigrid Methods, Pitman Research Notes in Mathematics, New York, 1993.Suche in Google Scholar
[20] C. Brändle, E. Colorado, A. de Pablo, and U. Sánchez, A concave–convex elliptic problem involving the fractional Laplacian, Proc. Royal Soc. Edinburgh Section A Math. 143 (2010), No. 1, 39–71.10.1017/S0308210511000175Suche in Google Scholar
[21] A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez, and K. Burrage, Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization, J. R. Soc. Interface 11 (2014), No. 97, 20140352.10.1098/rsif.2014.0352Suche in Google Scholar PubMed PubMed Central
[22] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Advances in Mathematics 224 (2010), 2052–2093.10.1016/j.aim.2010.01.025Suche in Google Scholar
[23] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ. 32 (2007), No. 8, 1245–1260.10.1080/03605300600987306Suche in Google Scholar
[24] A. Capella, J. Dávila, L. Dupaigne, and Y. Sire, Regularity of radial extremal solutions for some non-local semilinear equations, Commun. Partial Differ. Equ. 36 (2011), No. 8, 1353–1384.10.1080/03605302.2011.562954Suche in Google Scholar
[25] L. Chen, R. H. Nochetto, E. Otarola, and A. J. Salgado, Multilevel methods for nonuniformly elliptic operators and fractional diffusion, Math. Comput. 85 (2016), 2583–2607.10.1090/mcom/3089Suche in Google Scholar
[26] T. Danczul and J. Schöberl, A reduced basis method for fractional diffusion operators I, Preprint arXiv:1904.05599v2, 2019.10.1515/jnma-2020-0042Suche in Google Scholar
[27] H. Dinh, H. Antil, Y. Chen, E. Cherkaev, and A. Narayan, Model reduction for fractional elliptic problems using Kato’s formula, Preprint arXiv:1904.09332, 2019.10.3934/mcrf.2021004Suche in Google Scholar
[28] M. E. Farquhar, T. J. Moroney, Q. Yang, I. W. Turner, and K. F. Burrage, Computational modelling of cardiac ischaemia using a variable-order fractional Laplacian, Preprint arXiv:1809.07936v1, 2018.Suche in Google Scholar
[29] M. Faustmann, J. M. Melenk, and D. Praetorius, 𝓗-matrix approximability of the inverses of FEM matrices, Numerische Mathematik 131 (2015), 615–642.10.1007/s00211-015-0706-9Suche in Google Scholar
[30] M. Faustmann, J. M. Melenk, and D. Praetorius, Quasi-optimal convergence rate for an adaptive method for the integral fractional Laplacian, Preprint arXiv:1903.10409, 2019.10.1090/mcom/3603Suche in Google Scholar
[31] G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multiscale Modeling Simulation 7 (2009), No. 3, 1005–1028.10.1137/070698592Suche in Google Scholar
[32] A. A. Gonchar, Zolotarëv problems connected with rational functions, Math. USSR-Sbornik 7 (1969), No. 4, 623–635.10.1070/SM1969v007n04ABEH001107Suche in Google Scholar
[33] J. S. Hesthaven, G. Rozza, and B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations, 1st ed., Springer, Switzerland, 2015.10.1007/978-3-319-22470-1_1Suche in Google Scholar
[34] C. Hofreither, A unified view of some numerical methods for fractional diffusion, Comput. Math. Appl. 80 (2019), No. 2, 332–350.10.1016/j.camwa.2019.07.025Suche in Google Scholar
[35] M. Ilić, F. Liu, I. Turner, and V. Anh, Numerical approximation of a fractional-in-space diffusion equation, I, Fract. Calculus Appl. Anal. 8 (2005), No. 3, 323–341.Suche in Google Scholar
[36] M. Karkulik and J. M. Melenk, 𝓗-matrix approximability of inverses of discretizations of the fractional Laplacian, Advances Comput. Math. 45 (2019), 2893–2919.10.1007/s10444-019-09718-5Suche in Google Scholar
[37] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik 90 (2001), 117–148.10.1007/s002110100282Suche in Google Scholar
[38] M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator, Fractional Calculus Appl. Analysis 20 (2015), No. 1, 7–51.10.1515/fca-2017-0002Suche in Google Scholar
[39] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer-Verlag, New York, 1972.10.1007/978-3-642-65217-2Suche in Google Scholar
[40] A. Lischke, G. Pang, M. Gulian, F. Song, C. Glusa, X. Zheng, Z. Mao, W. Cai, M. Meerschaert, M. Ainsworth, and G. Karniadakis, What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys. 404 (2020), 109009.10.1016/j.jcp.2019.109009Suche in Google Scholar
[41] Y. Maday, A. T. Patera, and G. Turinici, Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations, Comptes Rendus Mathematique 335 (2002), No. 3, 289–294.10.1016/S1631-073X(02)02466-4Suche in Google Scholar
[42] S. Margenov, P. Marinov, R. Lazarov, S. Harizanov, and Y. Vutov, Optimal solvers for linear systems with fractional powers of sparse SPD matrices, Numer. Linear Algebra Appl. 25 (2018), No. 5, e2167.10.1002/nla.2167Suche in Google Scholar
[43] D. Meidner, J. Pfefferer, K. Schürholz, and B. Vexler, hp-finite elements for fractional diffusion, SIAM J. Numer. Analysis 56 (2017), No. 4, 2345–2374.10.1137/17M1135517Suche in Google Scholar
[44] J. M. Melenk and A. Rieder, hp-FEM for the fractional heat equation, IMA J. Numer. Anal. 41 (2020), No.1, 412–454.10.1093/imanum/drz054Suche in Google Scholar
[45] R. H. Nochetto, E. Otárola, and A. J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, Found. Comput. Math. 15 (2015), 733–791.10.1007/s10208-014-9208-xSuche in Google Scholar
[46] J. E. Pasciak, S. Margenov, P. Marinov, R. Lazarov, and S. Harizanov, Analysis of numerical methods for spectral fractional elliptic equations based on the best uniform rational approximation, J. Comput. Phys. 408 (2020), 109285.10.1016/j.jcp.2020.109285Suche in Google Scholar
[47] J. Peetre, On the Theory of Interpolation Spaces, Revista Un. Mat. Argentina, 1963.Suche in Google Scholar
[48] P. Perdikaris and G. E. Karniadakis, Fractional-order viscoelasticity in one-dimensional blood flow models, Annals Biomed. Engrg. 42 (2014), 1012–1023.10.1007/s10439-014-0970-3Suche in Google Scholar PubMed
[49] A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations, Springer Int. Publishing, 2016.10.1007/978-3-319-15431-2Suche in Google Scholar
[50] G. Rozza, D. B. P. Huynh, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Archives Comput. Methods Engrg. 15 (2008), 229.10.1007/s11831-008-9019-9Suche in Google Scholar
[51] J. Schöberl, NETGEN – An advancing front 2D/3D-mesh generator based on abstract rules, Comput. Visual. Sci. 1 (1997), 41–52.10.1007/s007910050004Suche in Google Scholar
[52] J. Schöberl, C++11 Implementation of Finite Elements in NGSolve, ASC Report No. 30/2014, Vienna University of Technology, Wien, 2014.Suche in Google Scholar
[53] J. Sprekels and E. Valdinoci, A new type of identification problems: Optimizing the fractional order in a nonlocal evolution equation, SIAM J. Control Optim. 55 (2016), 70–93.10.1137/16M105575XSuche in Google Scholar
[54] P. R. Stinga and J. L. Torrea, Extension problem and Harnack’s inequality for some fractional operators, Commun. Partial Differ. Equ. 35 (2010), 2092–2122.10.1080/03605301003735680Suche in Google Scholar
[55] L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces, Lecture Notes of the Unione Matematica Italiana, Vol. 3, Springer-Verlag, Berlin–Heidelberg, 2007. Vol.3Suche in Google Scholar
[56] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Pub., 1978.Suche in Google Scholar
[57] P. N. Vabishchevich, Numerically solving an equation for fractional powers of elliptic operators, J. Comput. Phys. 282 (2015), 289–302.10.1016/j.jcp.2014.11.022Suche in Google Scholar
[58] D. R. Witman, M. Gunzburger, and J. Peterson, Reduced-order modeling for nonlocal diffusion problems, Int. J. Numer. Methods Fluids 83 (2017), No. 3, 307–327.10.1002/fld.4269Suche in Google Scholar
[59] E. I. Zolotarëv, Collected Works, St.-Petersburg Academy of Sciences, 1877.Suche in Google Scholar
6 Appendix
Proof of Theorem 2.1
It suffices to show that
There holds
Let uk := 〈u, φk〉0 to deduce from Lemma 2.1
which proves (6.1) and concludes the proof.□
Proof of Theorem 2.2
One observes that for any F ∈ 𝒱0 we have
from which we conclude that
for all k ∈ ℕ implies that F = 0, it is also a basis. This proves the claim.□
Proof of Theorem 2.3
Due to
and Theorem 2.2, there holds
proving the first equality in (2.7). The second one follows by means of (2.2). Furthermore, one observes
confirming the first equality in (2.8). The latter is a consequence of (2.3).
The remainder follows as
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A reduced basis method for fractional diffusion operators II
- Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems
- Entropy stabilization and property-preserving limiters for ℙ1 discontinuous Galerkin discretizations of scalar hyperbolic problems
- Acceleration of nonlinear solvers for natural convection problems
Artikel in diesem Heft
- Frontmatter
- A reduced basis method for fractional diffusion operators II
- Schur complement spectral bounds for large hybrid FETI-DP clusters and huge three-dimensional scalar problems
- Entropy stabilization and property-preserving limiters for ℙ1 discontinuous Galerkin discretizations of scalar hyperbolic problems
- Acceleration of nonlinear solvers for natural convection problems