Startseite A finite element method for degenerate two-phase flow in porous media. Part II: Convergence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A finite element method for degenerate two-phase flow in porous media. Part II: Convergence

  • Vivette Girault , Beatrice Riviere EMAIL logo und Loic Cappanera
Veröffentlicht/Copyright: 25. September 2021

Abstract

Convergence of a finite element method with mass-lumping and flux upwinding is formulated for solving the immiscible two-phase flow problem in porous media. The method approximates directly the wetting phase pressure and saturation, which are the primary unknowns. Well-posedness is obtained in [J. Numer. Math., 29(2), 2021]. Theoretical convergence is proved via a compactness argument. The numerical phase saturation converges strongly to a weak solution in L2 in space and in time whereas the numerical phase pressures converge strongly to weak solutions in L2 in space almost everywhere in time. The proof is not straightforward because of the degeneracy of the phase mobilities and the unboundedness of the derivative of the capillary pressure.

MSC 2010: 65M12; 65M60

References

[1] J. Casado-Diaz, T. Chacón Rebollo, V. Girault, M. Gomez-Marmol, andF. Murat, Finite elements approximation of second order linear ellipticequations in divergence form with right-hand side in L1, Numerische Mathematik 105 (2007), No. 3, 337–374.10.1007/s00211-006-0033-2Suche in Google Scholar

[2] G. Chavent and J. Jaffré, Mathematical models and finite elements for reservoir simulation: single phase, multiphase and multicomponent flows through porous media, Elsevier, 1986.Suche in Google Scholar

[3] R. Eymard, R. Herbin, and A. Michel, Mathematical study of a petroleum-engineering scheme, ESAIM: Math. Modelling Numer. Analysis 37 (2003), No. 6, 937–972.10.1051/m2an:2003062Suche in Google Scholar

[4] R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook of Numerical Analysis 7 (2000), 713–1018.10.1016/S1570-8659(00)07005-8Suche in Google Scholar

[5] P. A. Forsyth, A control volume finite element approach to NAPL groundwater contamination, SIAM J. Sci. Stat. Comp. 12 (1991), No. 5, 1029–1057.10.1137/0912055Suche in Google Scholar

[6] V. Girault, B. Riviere, and L. Cappanera, Convergence of a finite element method for degenerate two-phase flow in porous media, Preprint arXiv:2001.0885910.1515/jnma-2020-0005Suche in Google Scholar

[7] V. Girault, B. Riviere, and L. Cappanera, A finite element method for degenerate two-phase flow in porous media. Part I: Well-posedness, J. Numer. Math. 29 (2021), No. 2, 81–101.10.1515/jnma-2020-0004Suche in Google Scholar

[8] J.-L. Guermond and B. Popov, Invariant domains and first-order continuous finite element approximations for hyperbolic systems, SIAM J. Numer. Anal. 54 (2016), No. 4, 2466–2489.10.1137/16M1074291Suche in Google Scholar

[9] J.-L. Lions, On some questions in boundary value problems of mathematical physics, In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Eds. G. DeLaPenha and L. Adauto), North-Holland Math. Series, Vol. 30, 1978, pp. 284–346.10.1016/S0304-0208(08)70870-3Suche in Google Scholar

[10] N. J. Walkington, Compactness properties of the DG and CG time stepping schemes for parabolic equations, SIAM J. Numer. Anal. 47 (2010), No. 6, 4680–4710.10.1137/080728378Suche in Google Scholar

Received: 2020-01-24
Revised: 2020-07-27
Accepted: 2020-12-23
Published Online: 2021-09-25
Published in Print: 2021-09-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2020-0005/html
Button zum nach oben scrollen