Startseite Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations

  • Christian Beck EMAIL logo , Fabian Hornung , Martin Hutzenthaler , Arnulf Jentzen und Thomas Kruse
Veröffentlicht/Copyright: 11. Dezember 2020

Abstract

One of the most challenging problems in applied mathematics is the approximate solution of nonlinear partial differential equations (PDEs) in high dimensions. Standard deterministic approximation methods like finite differences or finite elements suffer from the curse of dimensionality in the sense that the computational effort grows exponentially in the dimension. In this work we overcome this difficulty in the case of reaction–diffusion type PDEs with a locally Lipschitz continuous coervice nonlinearity (such as Allen–Cahn PDEs) by introducing and analyzing truncated variants of the recently introduced full-history recursive multilevel Picard approximation schemes.

JEL Classification: 60H30; 65C05; 65M75

Acknowledgment

The second author gratefully acknowledges a Research Travel Grant by the Karlsruhe House of Young Scientists (KHYS) supporting his stay at ETH Zurich. The third author gratefully acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via research grant HU 1889/6-1. The fourth author gratefully acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Mathematics Muenster: Dynamics–Geometry–Structure.

References

[1] C. Beck, S. Becker, P. Cheridito, A. Jentzen, and A. Neufeld, Deep splitting method for parabolic PDEs, arXiv:1907.03452 (2019), 40 p.10.1137/19M1297919Suche in Google Scholar

[2] C. Beck, S. Becker, P. Grohs, N. Jaafari, and A. Jentzen, Solving stochastic differential equations and Kolmogorov equations by means of deep learning, arXiv:1806.00421 (2018), 56 p.Suche in Google Scholar

[3] C. Beck, W. E, and A. Jentzen, Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations, J. Nonlinear Sci. 29 (2019), No. 4, 1563–1619.10.1007/s00332-018-9525-3Suche in Google Scholar

[4] C. Beck, L. Gonon, and A. Jentzen, Overcoming the curse of dimensionality in the numerical approximation of high-dimensional semilinear elliptic partial differential equations, arXiv:2003.00596 (2020), 50 p.Suche in Google Scholar

[5] S. Becker, R. Braunwarth, M. Hutzenthaler, A. Jentzen, and P. von Wurstemberger, Numerical simulations for full history recursive multilevel Picard approximations for systems of high-dimensional partial differential equations, arXiv:2005.10206 (2020), 21 p. (to appear in Commun. Comput. Physics10.4208/cicp.OA-2020-0130Suche in Google Scholar

[6] S. Becker, P. Cheridito, and A. Jentzen, Deep optimal stopping, J. Mach. Learn. Res. 20 (2019), No. 74, 1–25.Suche in Google Scholar

[7] J. Berg and K. Nyström, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing 317 (2018), 28–41.10.1016/j.neucom.2018.06.056Suche in Google Scholar

[8] B. Bouchard, X. Tan, X. Warin, and Y. Zou, Numerical approximation of BSDEs using local polynomial drivers and branching processes, Monte Carlo Methods Appl. 23 (2017), No. 4, 241–263.10.1515/mcma-2017-0116Suche in Google Scholar

[9] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations Springer Science & Business Media, New York, 2010.10.1007/978-0-387-70914-7Suche in Google Scholar

[10] Q. Chan-Wai-Nam, J. Mikael, and X. Warin, Machine learning for semi linear PDEs, J. Sci. Comput. 79 (2019), No. 3, 1667–1712.10.1007/s10915-019-00908-3Suche in Google Scholar

[11] W. E, J. Han, and A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations, Commun. Math. Stat. 5 (2017), No. 4, 349–380.10.1007/s40304-017-0117-6Suche in Google Scholar

[12] W. E, M. Hutzenthaler, A. Jentzen, and T. Kruse, Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, arXiv:1607.03295 (2016), 19 p. (revision requested from SN Part. Diff. Equ. Appl.Suche in Google Scholar

[13] W. E, M. Hutzenthaler, A. Jentzen, and T. Kruse, On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations, J. Sci. Comput. 79 (2019), No. 3, 1534–1571.10.1007/s10915-018-00903-0Suche in Google Scholar

[14] W. E and B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018), No. 1, 1–12.10.1007/s40304-018-0127-zSuche in Google Scholar

[15] A.-M. Farahmand, S. Nabi, and D. N. Nikovski, Deep reinforcement learning for partial differential equation control, 2017 American Control Conference (ACC) (2017), 3120–3127.10.23919/ACC.2017.7963427Suche in Google Scholar

[16] M. Fujii, A. Takahashi, and M. Takahashi, Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs, Asia-Pacific Financial Markets 26 (2019), No. 3, 391–408.10.1007/s10690-019-09271-7Suche in Google Scholar

[17] M. B. Giles, A. Jentzen, and T. Welti, Generalised multilevel Picard approximations, arXiv:1911.03188 (2019), 61 p. (revision requested from IMA J. Numer. Anal.Suche in Google Scholar

[18] L. Goudenege, A.Molent, and A. Zanette, Machine Learning for Pricing American Options in High Dimension, arXiv:1903.11275v1 (2019), 11 p.Suche in Google Scholar

[19] J. Han, A. Jentzen, and W. E, Solving high-dimensional partial differential equations using deep learning, Proc. of the National Academy of Sciences 115 (2018), No. 34, 8505–8510.10.1073/pnas.1718942115Suche in Google Scholar PubMed PubMed Central

[20] J. Han and J. Long, Convergence of the deep BSDE method for coupled FBSDEs, Probab. Uncertain. Quant. Risk 5 (2020), Paper No. 5, 33.10.1186/s41546-020-00047-wSuche in Google Scholar

[21] P. Henry-Labordère, Counterparty risk valuation: A marked branching diffusion approach, SSRN:1995503 (2012), 17 p.10.2139/ssrn.1995503Suche in Google Scholar

[22] P. Henry-Labordère, Deep Primal-Dual Algorithm for BSDEs: Applications of Machine Learning to CVA and IM, Preprint, SSRN–id3071506 (2017), 16 p.10.2139/ssrn.3071506Suche in Google Scholar

[23] P. Henry-Labordère, N. Oudjane, X. Tan, N. Touzi, and X.Warin, Branching diffusion representation of semilinear PDEs and Monte Carlo approximation, Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019), No. 1, 184–210.10.1214/17-AIHP880Suche in Google Scholar

[24] P. Henry-Labordère, X. Tan, and N. Touzi, A numerical algorithm for a class of BSDEs via the branching process, Stochastic Process. Appl. 124 (2014), No. 2, 1112–1140.10.1016/j.spa.2013.10.005Suche in Google Scholar

[25] C. Huré, H. Pham, and X. Warin, Deep backward schemes for high-dimensional nonlinear PDEs, Math. Comp. 89 (2020), No. 324, 1547–1579.10.1090/mcom/3514Suche in Google Scholar

[26] M. Hutzenthaler, A. Jentzen, and T. Kruse, Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities, arXiv:1912.02571 (2019), 33 p. (revision requested from Found. Comput. Math.10.1007/s10208-021-09514-ySuche in Google Scholar

[27] M. Hutzenthaler, A. Jentzen, T. Kruse, and T. A. Nguyen, A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations, SN Partial Differential Equations and Applications 1 (2020), 1–34.10.1007/s42985-019-0006-9Suche in Google Scholar

[28] M. Hutzenthaler, A. Jentzen, T. Kruse, T. A. Nguyen, and P. von Wurstemberger, Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations, arXiv:1807.01212v2 (2019), 30 p. (to appear in Proc. Royal Soc. A10.1098/rspa.2019.0630Suche in Google Scholar PubMed PubMed Central

[29] M. Hutzenthaler, A. Jentzen, and P. von Wurstemberger, Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks, Electron. J. Probab. 25 (2020), Paper No. 101, 73.10.1214/20-EJP423Suche in Google Scholar

[30] M. Hutzenthaler and T. Kruse, Multilevel Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities, SIAM J. Numer. Anal. 58 (2020), No. 2, 929–961.10.1137/17M1157015Suche in Google Scholar

[31] A. Jacquier and M. Oumgari, Deep PPDEs for rough local stochastic volatility, arXiv:1906.02551 (2019), 21 p.10.2139/ssrn.3400035Suche in Google Scholar

[32] F. John, Partial Differential Equations Applied mathematical sciences, Springer, 1982.10.1007/978-1-4684-9333-7Suche in Google Scholar

[33] Z. Long, Y. Lu, X. Ma, and B. Dong, PDE-Net: Learning PDEs from Data, Proceedings of Machine Learning Research, Vol. 80, pp. 3208–3216, PMLR, Stockholmsmässan, Stockholm Sweden, July 10–15, 2018.Suche in Google Scholar

[34] K. O. Lye, S. Mishra, and D. Ray, Deep learning observables in computational fluid dynamics, J. Comput. Phys. 410 (2020), 109339, 26.10.1016/j.jcp.2020.109339Suche in Google Scholar

[35] M. Magill, F. Qureshi, and H. de Haan, Neural networks trained to solve differential equations learn general representations, Advances in Neural Information Processing Systems (2018), 4075–4085.Suche in Google Scholar

[36] H. P. McKean, Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov, Comm. Pure Appl. Math. 28 (1975), No. 3, 323–331.10.1002/cpa.3160280302Suche in Google Scholar

[37] M. Raissi, Deep hidden physics models: deep learning of nonlinear partial differential equations, J. Mach. Learn. Res. 19 (2018), Paper No. 25, 1–24.Suche in Google Scholar

[38] J. Sirignano and K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, J. Comp. Phys. 375 (2018), 1339–1364.10.1016/j.jcp.2018.08.029Suche in Google Scholar

[39] A. V. Skorohod, Branching diffusion processes, Teor. Verojatnost. i Primenen. 9 (1964), 492–497.Suche in Google Scholar

[40] X. Warin, Nesting Monte Carlo for high-dimensional non-linear PDEs, Monte Carlo Methods and Applications 24 (2018), No. 4, 225–247.10.1515/mcma-2018-2020Suche in Google Scholar

[41] S. Watanabe, On the branching process for Brownian particles with an absorbing boundary, J. Math. Kyoto Univ. 4 (1965), 385–398.10.1215/kjm/1250524667Suche in Google Scholar

Received: 2019-08-03
Revised: 2020-06-08
Accepted: 2020-06-18
Published Online: 2020-12-11
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2019-0074/pdf
Button zum nach oben scrollen