Startseite L2-error analysis of an isoparametric unfitted finite element method for elliptic interface problems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

L2-error analysis of an isoparametric unfitted finite element method for elliptic interface problems

  • Christoph Lehrenfeld EMAIL logo und Arnold Reusken
Veröffentlicht/Copyright: 30. Januar 2018

Abstract

In the context of unfitted finite element discretizations the realization of high order methods is challenging due to the fact that the geometry approximation has to be sufficiently accurate. Recently a new unfitted finite element method was introduced which achieves a high order approximation of the geometry for domains which are implicitly described by smooth level set functions. This method is based on a parametric mapping which transforms a piecewise planar interface (or surface) reconstruction to a high order approximation. In the paper [C. Lehrenfeld and A. Reusken, IMA J. Numer. Anal. 38 (2018), No. 3, 1351–1387] an a priori error analysis of the method applied to an interface problem is presented. The analysis reveals optimal order discretization error bounds in the H1-norm. In this paper we extend this analysis and derive optimal L2-error bounds.

Classification: 65N30; 65N15; 65D05
  1. Funding: C. Lehrenfeld gratefully acknowledges funding by the German Science Foundation (DFG) within the project LE 3726/1-1.

References

[1] P. Bastian and C. Engwer, An unfitted finite element method using discontinuous Galerkin, Int. J. Numer. Methods Engrg. 79 (2009), NO. 12,1557–1576.10.1002/nme.2631Suche in Google Scholar

[2] C. Bernardi, Optimal finite-element interpolation on curved domains, SIAM J. Numer. Anal. 26 (1989), No. 5,1212–1240.10.1137/0726068Suche in Google Scholar

[3] T. Boiveau, E. Burman, S. Claus, and M. G. Larson, Fictitious domain method with boundary value correction using penaltyfree Nitsche method, Preprint arXiv:1610.04482 (2016).10.1515/jnma-2016-1103Suche in Google Scholar

[4] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, 1994.10.1007/978-1-4757-4338-8Suche in Google Scholar

[5] E. Burman, P. Hansbo, and M. G. Larson, A cut finite element method with boundary value correction, Preprint arXiv:1507.03096 (2015).10.1090/mcom/3240Suche in Google Scholar

[6] K. W. Cheng and T.-P. Fries, Higher-order XFEM for curved strong and weak discontinuities, Int. J. Num. Meth. Engrg. 82 (2010), No. 5, 564–590.10.1002/nme.2768Suche in Google Scholar

[7] C.-C. Chu, I. G. Graham, and T.-Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems, Math. Comput. 79 (2010), 1915–1955.10.1090/S0025-5718-2010-02372-5Suche in Google Scholar

[8] K. Deckelnick, C. Elliott, and T. Ranner, Unfitted finite element methods using bulk meshes for surface partial differential equations, SIAM J. Numer. Anal. 52 (2014), 2137–2162.10.1137/130948641Suche in Google Scholar

[9] K. Dréau, N. Chevaugeon, and N. Moës, Studied X-FEM enrichment to handle material interfaces with higher order finite element, Comput. Meth. Appl. Mech. Engrg. 199 (2010), No. 29, 1922–1936.10.1016/j.cma.2010.01.021Suche in Google Scholar

[10] C. M. Elliott and T. Ranner, Finite element analysis for a coupled bulk-surface partial differential equation, IMA J. Numer. Anal. 33 (2013), 377–402.10.1093/imanum/drs022Suche in Google Scholar

[11] A. Ern and J.-L. Guermond, Finite element quasi-interpolation and best approximation, ESAIM: M2AN51 (2017), 1367–1385.10.1051/m2an/2016066Suche in Google Scholar

[12] T.-P. Fries and S. Omerović, Higher-order accurate integration of implicit geometries, Int. J. Num. Meth. Engrg. (2015).10.1002/nme.5121Suche in Google Scholar

[13] J. Grande, C. Lehrenfeld, and A. Reusken, Analysis of a high order trace finite element method for PDEs on level set surfaces, SIAMJ. Numer. Anal. 56 (2017), No. 1, 228–255.10.1137/16M1102203Suche in Google Scholar

[14] J. Grande and A. Reusken, A higher order finite element method for partial differential equations on surfaces, SIAM J. Numer. Anal. 54 (2016), No. 1, 388–414.10.1137/14097820XSuche in Google Scholar

[15] S. Groß, V. Reichelt, and A. Reusken, A finite element based level set method for two-phase incompressible flows, Comput. Visual. Sci. 9 (2006), 239–257.10.1007/s00791-006-0024-ySuche in Google Scholar

[16] S. Groß and A. Reusken, An extended pressure finite element space for two-phase incompressible flows, J. Comput. Phys. 224 (2007), 40–58.10.1016/j.jcp.2006.12.021Suche in Google Scholar

[17] A. Hansbo and P. Hansbo, An unfitted finite element method, based on Nitsche’s method for elliptic interface problems, Comp. Methods Appl. Mech. Engrg. 191 (2002), No. 47, 5537–5552.10.1016/S0045-7825(02)00524-8Suche in Google Scholar

[18] J. Huang and J. Zou, Some new a priori estimates for second-order elliptic and parabolic interface problems, J. Diff. Equ. 184 (2002), 570–586.10.1006/jdeq.2001.4154Suche in Google Scholar

[19] F. Kummer and M. Oberlack, An extension of the discontinuous Galerkin method for the singular Poisson equation, SIAM J. Sci. Comput. 35 (2013), A603–A622.10.1137/120878586Suche in Google Scholar

[20] O. Ladyzhenskaya and N. Ural’tseva, Linear and Quasilinear Equations of Elliptic Type, Nauka, Moscow, 1973 (in Russian).Suche in Google Scholar

[21] P. L. Lederer, C.-M. Pfeiler, C. Wintersteiger, and C. Lehrenfeld, Higher order unfitted FEM for Stokes interface problems, Proc. Appl. Math. Mech. 16 (2016), No. 1, 7–10.10.1002/pamm.201610003Suche in Google Scholar

[22] C. Lehrenfeld, High order unfitted finite element methods on level set domains using isoparametric mappings, Comp. Methods Appl. Mech. Engrg. 300 (2016), 716 – 733.10.1016/j.cma.2015.12.005Suche in Google Scholar

[23] C. Lehrenfeld, A higher order isoparametric fictitious domain method for level set domains, Preprint arXiv:1612.02561 (2016).10.1007/978-3-319-71431-8_3Suche in Google Scholar

[24] C. Lehrenfeld and A. Reusken, Analysis of a high order unfitted finite element method for elliptic interface problems, IMA J. Numer. Anal. 38 (2018), No. 3, 1351–1387.10.1093/imanum/drx041Suche in Google Scholar

[25] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, SIAM J. Numer. Anal. 23 (1986), No. 3, 562–580.10.1137/0723036Suche in Google Scholar

[26] B. Müller, F. Kummer, and M. Oberlack, Highly accurate surface and volume integration on implicit domains by means of moment-fitting, Int.J. Num. Meth. Engrg. 96 (2013), No. 8, 512–528.10.1002/nme.4569Suche in Google Scholar

[27] M. A. Olshanskii, A. Reusken, and J. Grande, A finite element method for elliptic equations on surfaces, SIAM J. Numeri. Anal. 47 (2009), No. 5, 3339–3358.10.1137/080717602Suche in Google Scholar

[28] P. Oswald, On a BPX-preconditioner for ℙ1 elements, Computing51 (1993), 125–133.10.1007/BF02243847Suche in Google Scholar

[29] J. Parvizian, A. Düster, and E. Rank, Finite cell method, Comput. Mech. 41 (2007), No. 1, 121–133.10.1007/s00466-007-0173-ySuche in Google Scholar

[30] R. I. Saye, High-order quadrature method for implicitly defined surfaces and volumes in hyperrectangles, SIAM J. Sci. Comput. 37 (2015), No. 2, A993–A1019.10.1137/140966290Suche in Google Scholar

[31] J. Schöberl, C++11 Implementation of Finite Elements in NGSolve, Inst. for Analysis and Scientific Computing, Report No. ASC-2014-30, 2014.Suche in Google Scholar

[32] Y Sudhakar and W. A. Wall, Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods, Comp. Meth. Appl. Mech. Engrg. 258 (2013), 39–54.10.1016/j.cma.2013.01.007Suche in Google Scholar

Received: 2017-08-31
Revised: 2017-12-15
Accepted: 2017-12-17
Published Online: 2018-01-30
Published in Print: 2019-06-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2017-0109/html
Button zum nach oben scrollen