Startseite Strong convergence of discrete DG solutions of the heat equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Strong convergence of discrete DG solutions of the heat equation

  • Vivette Girault , Jizhou Li und Beatrice Rivière
Veröffentlicht/Copyright: 23. März 2016

Abstract

A convergence analysis to the weak solution is derived for interior penalty discontinuous Galerkin methods applied to the heat equation in two and three dimensions under general mixed boundary conditions. Strong convergence is established in the DG norm, as well as in the Lp norm, in space and in the L2 norm in time.

MSC 2010: 65M12; 65M60

References

[1] S. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions, SIAM Journal on Numerical Analysis, 41 (2003), pp. 306-324.Suche in Google Scholar

[2] P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.10.1115/1.3424474Suche in Google Scholar

[3] M. Crouzeix And P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations., RAIRO Numerical Analysis, 193 (1973), pp. 33-75.Suche in Google Scholar

[4] D. Di Pietro And A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Mathematics of Computation, 79 (2010), pp. 1303-1330.Suche in Google Scholar

[5] V. Girault And P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, Berlin Springer Verlag, 749 (1979).10.1007/BFb0063447Suche in Google Scholar

[6] V. Girault And P.-A. Raviart, Finite element methods for Navier-Stokes equations: theory and algorithms, vol. 5, Springer-Verlag, 1986.10.1007/978-3-642-61623-5Suche in Google Scholar

[7] V. Girault And B. Riviere, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM Journal on Numerical Analysis, 47 (2009), pp. 2052-2089.Suche in Google Scholar

[8] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Mathematics of Computation, 79 (2010), pp. 2169-2189.Suche in Google Scholar

[9] J. Peetre, Espaces d'interpolation et théorème de Soboleff, in Annales de l'institut Fourier, vol. 16, Institut Fourier, 1966, pp. 279-317.10.5802/aif.232Suche in Google Scholar

[10] B. Riviere, Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, SIAM, 2008.10.1137/1.9780898717440Suche in Google Scholar

[11] L. R. Scott And S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Mathematics of Computation, 54 (1990), pp. 483-493.Suche in Google Scholar

[12] L. Tartar, Topics In Nonlinear Analysis, volume 13 of Publications Mathématiques d'Orsay 78, Université de Paris-Sud Département de Mathématique, Orsay, (1978).Suche in Google Scholar

[13] J. Wloka, Partial Differential Equations, Cambridge University, 1987. 2310.1017/CBO9781139171755Suche in Google Scholar

Received: 2015-12-26
Accepted: 2015-3-10
Published Online: 2016-3-23
Published in Print: 2016-12-1

© 2016 by Walter de Gruyter Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jnma-2015-0067/html
Button zum nach oben scrollen