Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
On the best approximate (P,Q)-orthogonal symmetric and skew-symmetric solution of the matrix equation AXB=C
-
M. Sarduvan
, S. Şimşek und H. Özdemir
Veröffentlicht/Copyright:
7. Oktober 2014
Abstract
- Suppose that the matrix equation AXB = C with unknown matrix X is given, where A, B, and C are known matrices of suitable size. The matrix nearness problem is considered over the (P,Q)-orthogonal symmetric and (P,Q)-orthogonal skew-symmetric solutions of the matrix equation AXB=C. The explicit forms of the best approximate solutions of the problems considered are established. Moreover, two numerical examples and a comparative table, depending on the examples chosen from literature, are given.
Keywords: best approximate solution; Frobenius norm; matrix equations; spectral decomposition; matrix nearness problem; minimum residual problem
Published Online: 2014-10-7
Published in Print: 2014-10-1
© 2014 by Walter de Gruyter Berlin/Boston
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Frontmatter
- Discontinuous Galerkin finite element method for plate contact problem with frictional boundary conditions
- A non-conforming composite quadrilateral finite element pair for feedback stabilization of the Stokes equations
- Polyhedral Gauß–Seidel converges
- On the best approximate (P,Q)-orthogonal symmetric and skew-symmetric solution of the matrix equation AXB=C
Schlagwörter für diesen Artikel
best approximate solution;
Frobenius norm;
matrix equations;
spectral decomposition;
matrix nearness problem;
minimum residual problem
Artikel in diesem Heft
- Frontmatter
- Discontinuous Galerkin finite element method for plate contact problem with frictional boundary conditions
- A non-conforming composite quadrilateral finite element pair for feedback stabilization of the Stokes equations
- Polyhedral Gauß–Seidel converges
- On the best approximate (P,Q)-orthogonal symmetric and skew-symmetric solution of the matrix equation AXB=C