Startseite Exploring solitary wave solutions in the Ivancevic option pricing model using a ϕ6-model fractional derivative technique
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Exploring solitary wave solutions in the Ivancevic option pricing model using a ϕ6-model fractional derivative technique

  • Sajawal Abbas Baloch , Khush Bukht Mehdi , Rifaqat Ali , Imran Siddique EMAIL logo und Dilsora Abduvalieva
Veröffentlicht/Copyright: 26. September 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study presents a ϕ6-model technique for the Ivancevic option pricing model (IOPM) in the sense of M-truncated fractional derivative to successfully derive traveling wave solutions. In addition to other new findings, periodic, dark, and bright topological solutions are found. To the best of our knowledge, this research has not been previously addressed in the literature. The work improves our comprehension of the model by revisiting the concept of solitary waves. Prior research has already employed a variety of techniques to derive analytical solutions, which has contributed to identify novel soliton solutions within this framework. To improve visualization, we also assign particular parameter values to generate 2D, 3D, and contour plots for some of the discovered solutions. By revealing significant information about the dynamics and patterns of the solutions, these illustrations help to clarify the behavior of the model. Furthermore, the effect of the fractional parameter on wave pattern propagation is also investigated. The outcomes show that our suggested approach is a useful mathematical tool for resolving non-linear evolution equations (NLEES) by producing fresh, more thorough solutions.


Corresponding author: Imran Siddique, Department of Mathematics, University of Sargodha, 40100 Sargodha, Pakistan; Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan; and Mathematics in Applied Sciences and Engineering Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, 64001, Iraq, E-mail: 

Acknowledgments

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through a Large Group Project under grant number RGP2/156/46.

  1. Research ethics: The authors approve and consent to participate.

  2. Informed consent: The authors agree to publication.

  3. Author contributions: All authors typed, read, reviewed, and approved the final manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no conflict of interest.

  6. Research funding: This research received no external funding.

  7. Data availability: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

[1] C. Zhu, M. Al-Dossari, S. Rezapour, S. A. M. Alsallami, and B. Gunay, “Bifurcations, chaotic behavior, and optical solutions for the complex Ginzburg–Landau equation,” Results Phys., vol. 59, p. 107601, 2024, https://doi.org/10.1016/j.rinp.2024.107601.Suche in Google Scholar

[2] Z. Li, et al.., “Self-supervised dynamic learning for long-term high-fidelity image transmission through unstabilized diffusive media,” Nat. Commun., vol. 15, no. 1, p. 1498, 2024, https://doi.org/10.1038/s41467-024-45745-7.Suche in Google Scholar PubMed PubMed Central

[3] Z. W. Deng, Y. H. Jin, W. Gao, and B. H. Wang, “A closed-loop directional dynamics control with LQR active trailer steering for articulated heavy vehicle,” Proc. Inst. Mech. Eng. - Part D J. Automob. Eng., vol. 237, no. 12, pp. 2741–2758, 2023, https://doi.org/10.1177/09544070221121859.Suche in Google Scholar

[4] Z. Hui, et al.., “Switchable single-to multiwavelength conventional soliton and bound-state soliton generated from a NbTe2 saturable absorber-based passive mode-locked erbium-doped fiber laser,” ACS Appl. Mater. Interfaces, vol. 16, no. 17, pp. 22344–22360, 2024, https://doi.org/10.1021/acsami.3c19323.Suche in Google Scholar PubMed

[5] L. Liu, S. Zhang, L. Zhang, G. Pan, and J. Yu, “Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network,” IEEE Trans. Cybern., vol. 53, no. 6, pp. 4015–4028, 2022, https://doi.org/10.1109/tcyb.2022.3225106.Suche in Google Scholar PubMed

[6] H. J. Pesch, “Optimal control of dynamical systems governed by partial differential equations: a perspective from real-life applications,” IFAC Proc. Vol., vol. 45, no. 2, pp. 1–12, 2012, https://doi.org/10.3182/20120215-3-at-3016.00003.Suche in Google Scholar

[7] S. A. Billings and J. C. Peyton Jones, “Mapping non-linear integro-differential equations into the frequency domain,” Int. J. Control, vol. 52, no. 4, pp. 863–879, 1990, https://doi.org/10.1080/00207179008953572.Suche in Google Scholar

[8] V. Martinez-Luaces, “Modelling and inverse-modelling: experiences with ODE linear systems in engineering courses,” Int. J. Math. Educ. Sci. Technol., vol. 40, no. 2, pp. 259–268, 2009, https://doi.org/10.1080/00207390802276291.Suche in Google Scholar

[9] T. Ahmed-Ali, F. Giri, M. Krstic, and F. Lamnabhi-Lagarrigue, “Observer design for a class of nonlinear ODE–PDE cascade systems,” Syst. Control Lett., vol. 83, pp. 19–27, 2015, https://doi.org/10.1016/j.sysconle.2015.06.003.Suche in Google Scholar

[10] M. Krstic and A. Smyshlyaev, “Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays,” Syst. Control Lett., vol. 57, no. 9, pp. 750–758, 2008, https://doi.org/10.1016/j.sysconle.2008.02.005.Suche in Google Scholar

[11] C. Zhu, M. Al-Dossari, S. Rezapour, and B. Gunay, “On the exact soliton solutions and different wave structures to the (2 + 1) dimensional Chaffee–Infante equation,” Results Phys., vol. 57, p. 107431, 2024, https://doi.org/10.1016/j.rinp.2024.107431.Suche in Google Scholar

[12] C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, and B. Gunay, “Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation,” Results Phys., vol. 56, p. 107298, 2024, https://doi.org/10.1016/j.rinp.2023.107298.Suche in Google Scholar

[13] Q. Han and F. Chu, “Nonlinear dynamic model for skidding behavior of angular contact ball bearings,” J. Sound Vib., vol. 354, pp. 219–235, 2015, https://doi.org/10.1016/j.jsv.2015.06.008.Suche in Google Scholar

[14] U. N. Katugampola, “A new approach to generalized fractional derivatives,” arXiv preprint arXiv:1106.0965, 2011.Suche in Google Scholar

[15] M. Dalir and M. Bashour, “Applications of fractional calculus,” Appl. Math. Sci., vol. 4, no. 21, pp. 1021–1032, 2010.Suche in Google Scholar

[16] Y. I. Seo, A. Zeb, G. Zaman, and I. H. Jung, “Square-root dynamics of a SIR-model in fractional order,” Appl. Math., vol. 3, no. 12, pp. 1882–1887, 2012. https://doi.org/10.4236/am.2012.312257.Suche in Google Scholar

[17] R. E. Gutierrez, J. M. Rosario, and J. Tenreiro Machado, “Fractional order calculus: basic concepts and engineering applications,” Math. Probl Eng., vol. 2010, no. 1, p. 375858, 2010, https://doi.org/10.1155/2010/375858.Suche in Google Scholar

[18] S. Zhang and H. Q. Zhang, “Fractional sub-equation method and its applications to nonlinear fractional PDEs,” Phys. Lett. A, vol. 375, no. 7, pp. 1069–1073, 2011, https://doi.org/10.1016/j.physleta.2011.01.029.Suche in Google Scholar

[19] N. J. H. A. Shawer, “A generalizing of the fractional sub-equation method to solve systems of the space-time fractional differential equations,” Doctoral dissertation, Zarqa University, 2018.Suche in Google Scholar

[20] A. S. Rashed, A. N. M. Mostafa, A. M. Wazwaz, and S. M. Mabrouk, “Dynamical behavior and soliton solutions of the Jumarie’s space-time fractional modified Benjamin-Bona-Mahony equation in plasma physics,” Rom. Rep. Phys., vol. 75, 2023.Suche in Google Scholar

[21] R. F. Zhang and M. C. Li, “Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations,” Nonlinear Dyn., vol. 108, no. 1, pp. 521–531, 2022, https://doi.org/10.1007/s11071-022-07207-x.Suche in Google Scholar

[22] R. F. Zhang and S. Bilige, “Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation,” Nonlinear Dyn., vol. 95, pp. 3041–3048, 2019, https://doi.org/10.1007/s11071-018-04739-z.Suche in Google Scholar

[23] R. F. Zhang, M. C. Li, J. Y. Gan, Q. Li, and Z. Z. Lan, “Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method,” Chaos Solitons Fractals, vol. 154, p. 111692, 2022, https://doi.org/10.1016/j.chaos.2021.111692.Suche in Google Scholar

[24] Q. M. Ul-Hassan, J. Ahmad, M. Shakeel, and S. T. Mohyud-Din, “Homotopy analysis method with modified Riemann-Liouville derivate for solving the space-and time-fractional KDV equation,” Int. J. Mod. Math. Sci., vol. 5, pp. 14–26, 2013.Suche in Google Scholar

[25] N. H. Aljahdaly and A. M. Alweldi, “On the modified Laplace homotopy perturbation method for solving damped modified Kawahara equation and its application in a fluid,” Symmetry, vol. 15, no. 2, p. 394, 2023, https://doi.org/10.3390/sym15020394.Suche in Google Scholar

[26] S. Malik, M. S. Hashemi, S. Kumar, H. Rezazadeh, W. Mahmoud, and M. S. Osman, “Application of new Kudryashov method to various nonlinear partial differential equations,” Opt. Quant. Electron., vol. 55, no. 1, p. 8, 2023, https://doi.org/10.1007/s11082-022-04261-y.Suche in Google Scholar

[27] H. K. Barman, M. E. Islam, and M. A. Akbar, “A study on the compatibility of the generalized Kudryashov method to determine wave solutions,” Propuls. Power Res., vol. 10, no. 1, pp. 95–105, 2021, https://doi.org/10.1016/j.jppr.2020.12.001.Suche in Google Scholar

[28] Y. Tian and J. Liu, “Direct algebraic method for solving fractional Fokas equation,” Therm. Sci., vol. 25, no. 3, pp. 2235–2244, 2021, https://doi.org/10.2298/tsci200306111t.Suche in Google Scholar

[29] H. Rezazadeh, “New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity,” Optik, vol. 167, pp. 218–227, 2018, https://doi.org/10.1016/j.ijleo.2018.04.026.Suche in Google Scholar

[30] B. Lu, “The first integral method for some time fractional differential equations,” J. Math. Anal. Appl., vol. 395, no. 2, pp. 684–693, 2012, https://doi.org/10.1016/j.jmaa.2012.05.066.Suche in Google Scholar

[31] M. Eslami and H. Rezazadeh, “The first integral method for Wu–Zhang system with conformable time-fractional derivative,” Calcolo, vol. 53, pp. 475–485, 2016, https://doi.org/10.1007/s10092-015-0158-8.Suche in Google Scholar

[32] L. Song, Q. Wang, and H. Zhang, “Rational approximation solution of the fractional Sharma–Tasso–Olever equation,” J. Comput. Appl. Math., vol. 224, no. 1, pp. 210–218, 2009, https://doi.org/10.1016/j.cam.2008.04.033.Suche in Google Scholar

[33] A. M. A. El-Sayed, S. H. Behiry, and W. E. Raslan, “Adomian’s decomposition method for solving an intermediate fractional advection–dispersion equation,” Comput. Math. Appl., vol. 59, no. 5, pp. 1759–1765, 2010, https://doi.org/10.1016/j.camwa.2009.08.065.Suche in Google Scholar

[34] W. A. Faridi, A. M. Wazwaz, A. M. Mostafa, R. Myrzakulov, and Z. Umurzakhova, “The Lie point symmetry criteria and formation of exact analytical solutions for Kairat-II equation: Paul-Painlevé approach,” Chaos Solitons Fractals, vol. 182, p. 114745, 2024, https://doi.org/10.1016/j.chaos.2024.114745.Suche in Google Scholar

[35] U. Asghar, M. I. Asjad, W. A. Faridi, and A. Akgül, “Novel solitonic structure, Hamiltonian dynamics and lie symmetry algebra of biofilm,” Partial Differ. Equ. Appl. Math., vol. 9, p. 100653, 2024, https://doi.org/10.1016/j.padiff.2024.100653.Suche in Google Scholar

[36] M. B. Almatrafi, “Solitary wave solutions to a fractional-order Fokas equation via the improved modified extended tanh-function approach,” Mathematics, vol. 13, no. 1, p. 109, 2024, https://doi.org/10.3390/math13010109.Suche in Google Scholar

[37] M. B. Almatrafi, “Abundant traveling wave and numerical solutions for Novikov-Veselov system with their stability and accuracy,” Appl. Anal., vol. 102, no. 8, pp. 2389–2402, 2023, https://doi.org/10.1080/00036811.2022.2027381.Suche in Google Scholar

[38] M. B. Almatrafi, “Solitary wave solutions to a fractional model using the improved modified extended tanh-function method,” Fractal Fract., vol. 7, no. 3, p. 252, 2023, https://doi.org/10.3390/fractalfract7030252.Suche in Google Scholar

[39] M. B. Almatrafi, “Construction of closed form soliton solutions to the space-time fractional symmetric regularized long wave equation using two reliable methods,” Fractals, vol. 31, no. 10, p. 2340160, 2023, https://doi.org/10.1142/s0218348x23401606.Suche in Google Scholar

[40] M. Berkal and M. B. Almatrafi, “Bifurcation and stability of two-dimensional activator–inhibitor model with fractional-order derivative,” Fractal Fract., vol. 7, no. 5, p. 344, 2023, https://doi.org/10.3390/fractalfract7050344.Suche in Google Scholar

[41] Q. M. U. Hassan and S. T. Mohyud-Din, “Exp-function method using modified Riemann–Liouville derivative for singularly perturbed Boussinesq equations of fractional-order,” Ital. J. Pure Appl. Math., vol. 32, pp. 185–192, 2014.Suche in Google Scholar

[42] H. G. Abdelwahed, A. F. Alsarhana, E. K. El-Shewy, and M. A. Abdelrahman, “Characteristics of new stochastic solitonic solutions for the chiral type of nonlinear Schrödinger equation,” Fractal Fract., vol. 7, no. 6, p. 461, 2023, https://doi.org/10.3390/fractalfract7060461.Suche in Google Scholar

[43] M. Li, T. Wang, F. Chu, Q. Han, Z. Qin, and M. J. Zuo, “Scaling-basis chirplet transform,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 8777–8788, 2020, https://doi.org/10.1109/tie.2020.3013537.Suche in Google Scholar

[44] X. He, et al.., “Excellent microwave absorption performance of LaFeO3/Fe3O4/C perovskite composites with optimized structure and impedance matching,” Carbon, vol. 213, p. 118200, 2023, https://doi.org/10.1016/j.carbon.2023.118200.Suche in Google Scholar

[45] D. Chen, T. Zhao, L. Han, and Z. Feng, “Single-stage multi-input buck type high-frequency link’s inverters with series and simultaneous power supply,” IEEE Trans. Power Electron., vol. 37, no. 6, pp. 7411–7421, 2021, https://doi.org/10.1109/tpel.2021.3139646.Suche in Google Scholar

[46] X. Wang and L. Zhou, “Unveiling the mediating role of self-esteem in the relationship between physical activity and BMI: a structural equation modeling study in adolescents,” J. Asian Sci. Res., vol. 14, no. 2, pp. 208–226, 2024, https://doi.org/10.55493/5003.v14i2.5060.Suche in Google Scholar

[47] W. Ye and Y. Don, “Assessing the effects of negotiating leadership skills and conflict resolution on student achievement in Zhejiang Province, China: a structural equation modeling approach,” Int. J. Innov. Res. Sci. Stud., vol. 7, no. 3, pp. 888–900, 2024, https://doi.org/10.53894/ijirss.v7i3.2960.Suche in Google Scholar

[48] S. Fayanto, S. D. Naba, A. Kurniawan, U. Putri, and V. D. Padang, “The analyze comparative of physics computational thinking skill (CTs) in experiment laboratory,” Qubahan Acad. J., vol. 4, no. 3, pp. 13–32, 2024, https://doi.org/10.48161/qaj.v4n3a699.Suche in Google Scholar

[49] K. S. Nisar, O. A. Ilhan, S. T. Abdulazeez, J. Manafian, S. A. Mohammed, and M. S. Osman, “Novel multiple soliton solutions for some nonlinear PDEs via multiple exp-function method,” Results Phys., vol. 21, p. 103769, 2021, https://doi.org/10.1016/j.rinp.2020.103769.Suche in Google Scholar

[50] K. Zhang, et al.., “EATN: an efficient adaptive transfer network for aspect-level sentiment analysis,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp. 377–389, 2021.10.1109/TKDE.2021.3075238Suche in Google Scholar

[51] M. Raheel, K. K. Ali, A. Zafar, and A. Bekir, “Investigation of exact solutions of M-fractional Ivancevic option pricing model based on three different methods,” Authorea Preprints, 2022.10.22541/au.165717185.54598936/v1Suche in Google Scholar

[52] Y. Q. Chen, Y. H. Tang, J. Manafian, H. Rezazadeh, and M. S. Osman, “Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model,” Nonlinear Dyn., vol. 105, no. 3, pp. 2539–2548, 2021, https://doi.org/10.1007/s11071-021-06642-6.Suche in Google Scholar

[53] A. Jhangeer, W. A. Faridi, and M. Alshehri, “Soliton wave profiles and dynamical analysis of fractional Ivancevic option pricing model,” Sci. Rep., vol. 14, no. 1, p. 23804, 2024, https://doi.org/10.1038/s41598-024-74770-1.Suche in Google Scholar PubMed PubMed Central

[54] A. Jhangeer, W. A. Faridi, and M. Alshehri, “The study of phase portraits, multistability visualization, Lyapunov exponents and chaos identification of coupled nonlinear volatility and option pricing model,” Eur. Phys. J. Plus, vol. 139, no. 7, pp. 1–21, 2024, https://doi.org/10.1140/epjp/s13360-024-05435-1.Suche in Google Scholar

[55] A. Jhangeer, A. R. Ansari, M. Imran, M. B. Riaz, and A. M. Talafha, “Application of propagating solitons to Ivancevic option pricing governing model and construction of first integral by Nucci’s direct reduction approach,” Ain Shams Eng. J., vol. 15, no. 4, p. 102615, 2024, https://doi.org/10.1016/j.asej.2023.102615.Suche in Google Scholar

[56] H. U. Rehman, P. J. Y. Wong, A. F. Aljohani, I. Iqbal, and M. S. Saleem, “The fractional soliton solutions: shaping future finances with innovative wave profiles in option pricing system,” AIMS Math., vol. 9, pp. 24699–24721, 2024, https://doi.org/10.3934/math.20241203.Suche in Google Scholar

[57] C. Gaafele, et al.., “Modulational instability of the coupled nonlinear volatility and option price model,” arXiv preprint arXiv:2405.19887, 2024.Suche in Google Scholar

[58] X. Zeng, C. Liang, and C. Yuan, “Solitary wave and singular wave solutions for Ivancevic option pricing model,” Math. Probl Eng., vol. 2022, no. 1, p. 4599194, 2022, https://doi.org/10.1155/2022/4599194.Suche in Google Scholar

Received: 2025-01-18
Accepted: 2025-08-20
Published Online: 2025-09-26

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jncds-2025-0006/html
Button zum nach oben scrollen