Startseite Composite optimal robust control of flexible link manipulator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Composite optimal robust control of flexible link manipulator

  • Sanjay Thakur ORCID logo EMAIL logo und Ranjit Kumar Barai
Veröffentlicht/Copyright: 1. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study presents the development of a composite controller by combining the optimal robust controller(ORC) and a back-stepping controller, in presence of unmatched model uncertainty, to achieve vibration reduction and joint position tracking in a two link flexible manipulator (TLFM). The dynamics of the TLFM have been modelled using the assumed mode method, incorporating mode shapes to accurately represent the flexible links’ vibrations. Two mode shapes have been considered for each link. One source of uncertainty in the system has been identified as the payload mass. The manipulator responds differently when the payload mass connected to the end-effector is changed, demonstrating the effectiveness of the controller. The closed-loop stability is established utilizing the Lyapunov method, and trajectory convergence has been demonstrated through Barbalat’s Lemma. Unknown gains present in the controller’s formulation have been fine-tuned using the FOX optimization algorithm (FOXOA) and arithmetic optimization algorithm (AOA). The simulation results showcase the impact of both optimization techniques on the controller’s performance, validating its robustness and efficacy in the presence of uncertainties. In the simulation section, it has been found that the performance of the TLFM with FOXOA is better compared to AOA.


Corresponding author: Sanjay Thakur, Department of Electrical Engineering, Jadavpur University, Kolkata, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

[1] L. Tang, M. Gouttefarde, H. Sun, L. Yin, and C. Zhou, “Dynamic modelling and vibration suppression of a single-link flexible manipulator with two cables,” Mech. Mach. Theor., vol. 162, no. 8, p. 104347, 2021. https://doi.org/10.1016/j.mechmachtheory.2021.104347.Suche in Google Scholar

[2] Y. Li, S. S. Ge, Q. Wei, T. Gan, and X. Tao, “An online trajectory planning method of a flexible-link manipulator aiming at vibration suppression,” IEEE Access, vol. 8, pp. 130616–130632, 2020, https://doi.org/10.1109/access.2020.3009526.Suche in Google Scholar

[3] K. Lochan, B. K. Roy, and B. Subudhi, “A review on two-link flexible manipulators,” Annu. Rev. Control, vol. 42, no. 1, pp. 346–367, 2016. https://doi.org/10.1016/j.arcontrol.2016.09.019.Suche in Google Scholar

[4] S. Zhang, R. Liu, K. Peng, and W. He, “Boundary output feedback control for a flexible two-link manipulator system with high-gain observers,” IEEE Trans. Control Syst. Technol., vol. 29, no. 2, pp. 835–840, 2019, https://doi.org/10.1109/tcst.2019.2958017.Suche in Google Scholar

[5] Z. C. Qiu and W. Z. Zhang, “Trajectory planning and diagonal recurrent neural network vibration control of a flexible manipulator using structural light sensor,” Mech. Syst. Signal Process., vol. 132, no. 10, pp. 563–594, 2019. https://doi.org/10.1016/j.ymssp.2019.07.014.Suche in Google Scholar

[6] M. S. Gümüş, A. Çakan, and M. Kalyoncu, “Cascade proportional derivative controller for a flexible link robot manipulator using the bees algorithm,” Acad. Platform J. Eng. Smart Syst., vol. 11, no. 1, pp. 27–34, 2023, https://doi.org/10.21541/apjess.1084875.Suche in Google Scholar

[7] T. Zebin and M. S. Alam, “Dynamic modeling and fuzzy logic control of a two-link flexible manipulator using genetic optimization techniques,” in 2010 13th International Conference on Computer and Information Technology (ICCIT), IEEE, 2010, pp. 418–423.10.1109/ICCITECHN.2010.5723894Suche in Google Scholar

[8] M. Shi, Y. Cheng, B. Rong, W. Zhao, Z. Yao, and C. Yu, “Research on vibration suppression and trajectory tracking control strategy of a flexible link manipulator,” Appl. Math. Model., vol. 110, no. 10, pp. 78–98, 2022. https://doi.org/10.1016/j.apm.2022.05.030.Suche in Google Scholar

[9] B. Xu, “Composite learning control of flexible-link manipulator using NN and DOB,” IEEE Trans. Syst. Man Cybern. Syst., vol. 48, no. 11, pp. 1979–1985, 2017, https://doi.org/10.1109/tsmc.2017.2700433.Suche in Google Scholar

[10] M. Raoufi and H. Delavari, “Sensor-fault-tolerant controller for a flexible-link manipulator with output constraint,” in 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA), IEEE, 2022, pp. 1–5.10.1109/ICCIA54998.2022.9737159Suche in Google Scholar

[11] V. K. Singh and J. Ohri, “Simultaneous control of position and vibration of flexible link manipulator by nature-inspired algorithms,” in 2018 IEEE 8th Power India International Conference (PIICON), IEEE, 2018, pp. 1–6.10.1109/POWERI.2018.8704403Suche in Google Scholar

[12] A. A. Al-Khafaji and I. Z. Darus, “Controller optimization using cuckoo search algorithm of a flexible single-link manipulator,” in 2014 Proceedings of First International Conference on Systems, 2018, pp. 39–44. Available at: https://www.semanticscholar.org/paper/Controller-Optimization-Using-Cuckoo-Search-of-a-Khafaji-Darus/b774175f4ce1de422813c88c7856df3ff147b3bb.Suche in Google Scholar

[13] A. A. Al-Khafaji and I. Z. Darus, “Controller optimization using cuckoo search algorithm of a flexible single-link manipulator,” Optimization, vol. 9, no. 10, p. 11, 2014.Suche in Google Scholar

[14] A. Yazdizadeh, K. Khorasani, and R. V. Patel, “Identification of a two-link flexible manipulator using adaptive time delay neural networks,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 30, no. 1, pp. 165–172, 2000, https://doi.org/10.1109/3477.826956.Suche in Google Scholar PubMed

[15] M. Khairudin, Z. Mohamed, and A. R. Husain, “Dynamic model and robust control of flexible link robot manipulator,” TELKOMNIKA (Telecommun. Comput. Electron. Control), vol. 9, no. 2, pp. 279–286, 2011, https://doi.org/10.12928/telkomnika.v9i2.698.Suche in Google Scholar

[16] A. Shawky, D. Zydek, Y. Z. Elhalwagy, and A. Ordys, “Modeling and nonlinear control of a flexible-link manipulator,” Appl. Math. Model., vol. 37, no. 23, pp. 9591–9602, 2013, https://doi.org/10.1016/j.apm.2013.05.003.Suche in Google Scholar

[17] M. Bai, D. H. Zhou, and H. Schwarz, “Adaptive augmented state feedback control for an experimental planar two-link flexible manipulator,” IEEE Trans. Robot. Autom., vol. 14, no. 6, pp. 940–950, 1998, https://doi.org/10.1109/70.736777.Suche in Google Scholar

[18] P. Fan and H. Hu, “Trajectory planning of vibration suppression for hybrid structure flexible manipulator based on differential evolution particle swarm optimization algorithm,” J. Phys.: Conf. Ser., vol. 2691, no. 1, p. 012002, 2024. https://doi.org/10.1088/1742-6596/2691/1/012002.Suche in Google Scholar

[19] S. Thakur, R. K. Barai, A. Bhattacharya, and A. Ghosh, “Comparative analysis of sliding mode controllers for trajectory tracking and vibration reduction in a two-link flexible manipulator with different sliding surfaces,” Arabian J. Sci. Eng., vol. 49, no. 6, pp. 1–18, 2024. https://doi.org/10.1007/s13369-024-09196-y.Suche in Google Scholar

[20] S. Thakur, R. K. Barai, and A. Bhattacharya, “Robust Lyapunov-based control for trajectory tracking and vibration reduction in a planner flexible link manipulator: handling external disturbances and model uncertainty: robust Lyapunov based control for flexible link manipulator,” in 2024 23rd International Symposium INFOTEH-JAHORINA (INFOTEH), IEEE, 2024, pp. 1–6.10.1109/INFOTEH60418.2024.10495938Suche in Google Scholar

[21] S. Thakur and R. K. Barai, “Addressing model uncertainties and external disturbances in optimal robust control for vibration reduction in a flexible link manipulator,” J. Sci. Ind. Res., vol. 82, no. 7, pp. 700–710, 2023.10.56042/jsir.v82i07.1844Suche in Google Scholar

[22] J. Bettega and D. Richiedei, “Trajectory tracking in an underactuated, non-minimum phase two-link multibody system through model predictive control with embedded reference dynamics,” Mech. Mach. Theor., vol. 180, no. 2, p. 105165, 2023. https://doi.org/10.1016/j.mechmachtheory.2022.105165.Suche in Google Scholar

[23] X. Zhu, J. Cao, C. Yannick, L. Wang, X. Shen, and P. Liu, “High-precision tip tracking of a flexible link manipulator using two-time scale adaptive robust control,” IEEE ASME Trans. Mechatron., vol. 28, no. 5, pp. 2576–2587, 2023. https://doi.org/10.1109/tmech.2023.3238359.Suche in Google Scholar

[24] B. Xu and P. Zhang, “Composite learning sliding mode control of flexible-link manipulator,” Complexity, vol. 2017, pp. 1–6, 2017, https://doi.org/10.1155/2017/9430259.Suche in Google Scholar

[25] V. Feliu, K. S. Rattan, and H. B. Brown, “Adaptive control of a single-link flexible manipulator,” IEEE Control Syst. Mag., vol. 10, no. 2, pp. 29–33, 1990, https://doi.org/10.1109/37.45791.Suche in Google Scholar

[26] F. Lin, Robust Control Design: An Optimal Control Approach, Hoboken, NJ, John Wiley & Sons, 2007.10.1002/9780470059579Suche in Google Scholar

[27] J. Zhou, C. Wen, J. Zhou, and C. Wen, Adaptive Backstepping Control, Berlin Heidelberg, Springer, 2008.Suche in Google Scholar

[28] J. J. Slotine, Applied Nonlinear Control, vol. 2, Englewood Cliffs, NJ, PRENTICE-HALL Google Schola, 1991, pp. 1123–1131.Suche in Google Scholar

[29] L. Abualigah, A. Diabat, S. Mirjalili, M. Abd Elaziz, and A. H. Gandomi, “The arithmetic optimization algorithm,” Comput. Methods Appl. Mech. Eng., vol. 376, no. 4, p. 113609, 2021. https://doi.org/10.1016/j.cma.2020.113609.Suche in Google Scholar

[30] H. Mohammed and T. Rashid, “FOX: a FOX-inspired optimization algorithm,” Appl. Intell., vol. 53, no. 1, pp. 1030–1050, 2023, https://doi.org/10.1007/s10489-022-03533-0.Suche in Google Scholar

Received: 2024-05-23
Accepted: 2025-07-04
Published Online: 2025-08-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jncds-2024-0062/pdf
Button zum nach oben scrollen