Startseite Mathematik Unique continuation for a reaction-diffusion system with cross diffusion
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Unique continuation for a reaction-diffusion system with cross diffusion

  • Bin Wu EMAIL logo , Ying Gao , Zewen Wang und Qun Chen
Veröffentlicht/Copyright: 30. Januar 2019

Abstract

This paper concerns unique continuation for a reaction-diffusion system with cross diffusion, which is a drug war reaction-diffusion system describing a simple dynamic model of a drug epidemic in an idealized community. We first establish a Carleman estimate for this strongly coupled reaction-diffusion system. Then we apply the Carleman estimate to prove the unique continuation, which means that the Cauchy data on any lateral boundary determine the solution uniquely in the whole domain.

Award Identifier / Grant number: 11601240

Award Identifier / Grant number: 11561003

Funding statement: This work is supported by NSFC (No. 11601240, No. 11561003) and the Foundation of Academic and Technical Leaders Program for Major Subjects in Jiangxi Province (No. 20172BCB22019).

References

[1] M. Bellassoued and M. Yamamoto, Carleman estimate and inverse source problem for Biot’s equations describing wave propagation in porous media, Inverse Problems 29 (2013), no. 11, Article ID 115002. 10.1088/0266-5611/29/11/115002Suche in Google Scholar

[2] M. Boulakia, A.-C. Egloffe and C. Grandmont, Stability estimates for the unique continuation property of the Stokes system and for an inverse boundary coefficient problem, Inverse Problems 29 (2013), no. 11, Article ID 115001. 10.1088/0266-5611/29/11/115001Suche in Google Scholar

[3] A. L. Bukhgeĭm and M. V. Klibanov, Uniqueness in the large of a class of multidimensional inverse problems, Dokl. Akad. Nauk SSSR 260 (1981), no. 2, 269–272. Suche in Google Scholar

[4] T. Carleman, Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes, Ark. Mat. Astr. Fys. 26 (1939), no. 17, 9. Suche in Google Scholar

[5] O. Y. Èmanuilov, Controllability of parabolic equations, Mat. Sb. 186 (1995), no. 6, 109–132. 10.1070/SM1995v186n06ABEH000047Suche in Google Scholar

[6] J. M. Epstein, Nonlinear Dynamics, Mathematical Biology, and Social Science, Lecture Notes Santa Fe Inst. Stud. Sci. Compl. 4, Addison-Wesley, Reading, 1997. Suche in Google Scholar

[7] J. Fan, M. Di Cristo, Y. Jiang and G. Nakamura, Inverse viscosity problem for the Navier–Stokes equation, J. Math. Anal. Appl. 365 (2010), no. 2, 750–757. 10.1016/j.jmaa.2009.12.012Suche in Google Scholar

[8] X. Fu, A weighted identity for partial differential operators of second order and its applications, C. R. Math. Acad. Sci. Paris 342 (2006), no. 8, 579–584. 10.1016/j.crma.2006.02.023Suche in Google Scholar

[9] A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lect. Notes Ser. 34, Seoul National University, Seoul, 1996. Suche in Google Scholar

[10] O. Y. Imanuvilov and M. Yamamoto, Lipschitz stability in inverse parabolic problems by the Carleman estimate, Inverse Problems 14 (1998), no. 5, 1229–1245. 10.1088/0266-5611/14/5/009Suche in Google Scholar

[11] O. Y. Imanuvilov and M. Yamamoto, Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci. 39 (2003), no. 2, 227–274. 10.2977/prims/1145476103Suche in Google Scholar

[12] O. Y. Imanuvilov and M. Yamamoto, Carleman estimates for the non-stationary Lamé system and the application to an inverse problem, ESAIM Control Optim. Calc. Var. 11 (2005), no. 1, 1–56. 10.1051/cocv:2004030Suche in Google Scholar

[13] V. Isakov, Inverse Problems for Partial Differential Equations, Appl. Math. Sci. 127, Springer, New York, 1998. 10.1007/978-1-4899-0030-2Suche in Google Scholar

[14] V. Isakov, On the uniqueness of the continuation for a thermoelasticity system, SIAM J. Math. Anal. 33 (2001), no. 3, 509–522. 10.1137/S0036141000366509Suche in Google Scholar

[15] V. Isakov and N. Kim, Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress, Appl. Math. (Warsaw) 35 (2008), no. 4, 447–465. 10.4064/am35-4-4Suche in Google Scholar

[16] M. V. Klibanov, Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems, J. Inverse Ill-Posed Probl. 21 (2013), no. 4, 477–560. 10.1515/jip-2012-0072Suche in Google Scholar

[17] M. V. Klibanov and A. E. Kolesov, Convexification of a 3-D coefficient inverse scattering problem, Comput. Math. Appl. (2018), 10.1016/j.camwa.2018.03.016. 10.1016/j.camwa.2018.03.016Suche in Google Scholar

[18] M. V. Klibanov, A. E. Kolesov, L. Nguyen and A. Sullivan, Globally strictly convex cost functional for a 1-D inverse medium scattering problem with experimental data, SIAM J. Appl. Math. 77 (2017), no. 5, 1733–1755. 10.1137/17M1122487Suche in Google Scholar

[19] M. V. Klibanov and A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2004. 10.1515/9783110915549Suche in Google Scholar

[20] M. M. Lavrent’ev, V. G. Romanov and S. P. Šišatskiĭ, Ill-Posed Problems of Mathematical Physics and Analysis, American Mathematical Society, Providence, 1980. Suche in Google Scholar

[21] Q. Lü and Z. Yin, Unique continuation for stochastic heat equations, ESAIM Control Optim. Calc. Var. 21 (2015), no. 2, 378–398. 10.1051/cocv/2014027Suche in Google Scholar

[22] J.-P. Puel and M. Yamamoto, On a global estimate in a linear inverse hyperbolic problem, Inverse Problems 12 (1996), no. 6, 995–1002. 10.1088/0266-5611/12/6/013Suche in Google Scholar

[23] V. G. Romanov and M. Yamamoto, Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement, Appl. Anal. 89 (2010), no. 3, 377–390. 10.1080/00036810903518975Suche in Google Scholar

[24] L. Rosier and B.-Y. Zhang, Null controllability of the complex Ginzburg-Landau equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), no. 2, 649–673. 10.1016/j.anihpc.2008.03.003Suche in Google Scholar

[25] I. Seo, Global unique continuation from a half space for the Schrödinger equation, J. Funct. Anal. 266 (2014), no. 1, 85–98. 10.1016/j.jfa.2013.09.025Suche in Google Scholar

[26] S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations, SIAM J. Control Optim. 48 (2009), no. 4, 2191–2216. 10.1137/050641508Suche in Google Scholar

[27] M. Uesaka and M. Yamamoto, Carleman estimate and unique continuation for a structured population model, Appl. Anal. 95 (2016), no. 3, 599–614. 10.1080/00036811.2015.1022157Suche in Google Scholar

[28] V. K. Vanag and I. R. Epstein, Cross-diffusion and pattern formation in reaction-diffusion systems, Phys. Chem. Chem. Phys. 11 (2009), 897–912. 10.1039/B813825GSuche in Google Scholar PubMed

[29] B. Wu and J. Liu, Determination of an unknown source for a thermoelastic system with a memory effect, Inverse Problems 28 (2012), no. 9, Article ID 095012. 10.1088/0266-5611/28/9/095012Suche in Google Scholar

[30] B. Wu and J. Yu, Hölder stability of an inverse problem for a strongly coupled reaction-diffusion system, IMA J. Appl. Math. 82 (2017), no. 2, 424–444. 10.1093/imamat/hxw058Suche in Google Scholar

[31] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems 25 (2009), no. 12, Article ID 123013. 10.1088/0266-5611/25/12/123013Suche in Google Scholar

[32] G. Yuan and M. Yamamoto, Lipschitz stability in the determination of the principal part of a parabolic equation, ESAIM Control Optim. Calc. Var. 15 (2009), no. 3, 525–554. 10.1051/cocv:2008043Suche in Google Scholar

Received: 2017-09-24
Revised: 2018-12-25
Accepted: 2019-01-01
Published Online: 2019-01-30
Published in Print: 2019-08-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2017-0094/pdf
Button zum nach oben scrollen