Startseite Error analysis for the operator marching method applied to range dependent waveguides
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Error analysis for the operator marching method applied to range dependent waveguides

  • Peng Li , Keying Liu , Weibing Zuo und Weizhou Zhong EMAIL logo
Veröffentlicht/Copyright: 14. Januar 2016

Abstract

The relations between stability and accuracy of the operator marching method (OMM) are usually conflicting in waveguides with strong range dependence. To explain this phenomenon, this study intends to present an error estimate for the OMM in range dependent waveguides. We utilize “approximation level” to measure truncation error for a marching method in various range step sizes. Then, the error estimate is developed to analyze the performances of the OMM. Through an error analysis, we verify the following features of the OMM: (i) it is valid to apply the OMM in slowly varying waveguides with very large range step sizes; (ii) the OMM may blow up suddenly when the range dependence is strong and the step size is extremely small in the same time. We also develop a three-number set to describe the stability and accuracy level of a general marching method for computing wave propagation in a waveguide. In the end, extensive numerical experiments are implemented to verify the correctness of the error analysis.

MSC 2010: 65N12; 65N20

Award Identifier / Grant number: NCET-08-0450

Award Identifier / Grant number: 985 II

Funding statement: Supported by NCET-08-0450 and 985 II of Xi’an Jiaotong University.

References

[1] Collins M. D. and Kuperman W. A., Inverse problems in ocean acoustics, Inverse Problems 10 (1994), 1023–1040. 10.1088/0266-5611/10/5/003Suche in Google Scholar

[2] Collins M. D. and Siegmann W. L., Parabolic Wave Equations with Applications, Springer, New York, 2001. Suche in Google Scholar

[3] Delillo T., Isakov V., Valdivia N. and Wang L., The detection of the source of acoustical noise in two dimensions, SIAM J. Appl. Math. 61 (2001), 2104–2121. 10.1137/S0036139900367152Suche in Google Scholar

[4] Delillo T., Isakov V., Valdivia N. and Wang L., The detection of surface vibrations from interior acoustical pressure, Inverse Problems 19 (2003), 507–524. 10.1088/0266-5611/19/3/302Suche in Google Scholar

[5] Jensen F. B., Kuperman W. A., Porter M. B. and Schmidt H., Computational Ocean Acoustics, AIP, Melville, 1994. 10.1063/1.2808704Suche in Google Scholar

[6] Knightly C. H. and Mary D. F. St., Stable marching schemes based on elliptic models of wave propagation, J. Acoust. Soc. A 93 (1993), 1866–1872. 10.1121/1.406701Suche in Google Scholar

[7] Li P., Chen Z. H. and Zhu J. X., An operator marching method for inverse problems in range dependent waveguides, Comput. Methods Appl. Mech. Engrg. 197 (2008), 4077–4091. 10.1016/j.cma.2008.04.001Suche in Google Scholar

[8] Li P. and Zhong W., The inverse fundamental operator marching method for Cauchy problems in range-dependent stratified waveguides, Math. Probl. Eng. 2011 (2011), Article ID 259479. 10.1155/2011/259479Suche in Google Scholar

[9] Li P., Zhong W., Li G. S. and Chen Z. H., A numerical local orthogonal transform method for stratified waveguides, J. Zhejiang Univ. Sci. (C) 11 (2010), no. 12, 998–1008. 10.1631/jzus.C0910732Suche in Google Scholar

[10] Lu Y. Y., One-way large range step methods for Helmholtz waveguides, J. Comput. Phys. 152 (1999), 231–250. 10.1006/jcph.1999.6243Suche in Google Scholar

[11] Lu Y. Y., Huang J. and McLauphlin J. R., Local orthogonal transformation and one-way methods for acoustics waveguides, Wave Motion 34 (2001), 193–207. 10.1016/S0165-2125(00)00083-4Suche in Google Scholar

[12] Lu Y. Y. and McLaughlin J. R., The Riccati method for the Helmholtz equation, J. Acoust. Soc. Amer. 100 (1996), 1432–1446. 10.1121/1.415990Suche in Google Scholar

[13] Lu Y. Y. and Zhu J. X., A local orthogonal transform for acoustic waveguides with an internal interface, J. Comput. Phys. 12 (2004), 37–53. 10.1142/S0218396X04002183Suche in Google Scholar

[14] Natterer F. and Wübbeling F., A propagation-backpropagation method for ultrasound tomography, Inverse Problems 11 (1995), 1225–1232. 10.1088/0266-5611/11/6/007Suche in Google Scholar

[15] Natterer F. and Wübbeling F., Marching schemes for inverse acoustic scattering problems, Numer. Math. 100 (2005), 697–710. 10.1007/s00211-004-0580-3Suche in Google Scholar

[16] Sandberg K. and Beylkin G., Full wave-equation depth extrapolation for migration, Geophys. 74 (2009), no. 6, 121–128. 10.1190/1.3202535Suche in Google Scholar

[17] Zhu J. X. and Li P., Local orthogonal transform for a class of acoustic waveguide, Progr. Natural Sci. 17 (2007), 18–28. Suche in Google Scholar

[18] Zhu J. X. and Li P., The mathematical treatment of wave propagation in the acoustical waveguides with n curved interfaces, J. Zhejiang Univ. Sci. (A) 9 (2008), no. 10, 1463–1472. 10.1631/jzus.A0720064Suche in Google Scholar

[19] Zhu J. X. and Lu Y. Y., Large range step method for acoustic waveguide with two layer media, Progr. Natural Sci. 12 (2002), 820–825. Suche in Google Scholar

[20] Zhu J. X. and Lu Y. Y., Validity of one-way models in the weak range dependence limit, J. Comput. Phys. 12 (2004), 55–66. 10.1142/S0218396X0400216XSuche in Google Scholar

Received: 2015-7-6
Accepted: 2015-11-13
Published Online: 2016-1-14
Published in Print: 2016-10-1

© 2016 by De Gruyter

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jiip-2015-0069/html
Button zum nach oben scrollen