Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Elements of order at most 4 in finite 2-groups, 2
-
Zvonimir Janko
Veröffentlicht/Copyright:
18. November 2005
Abstract
Let G be a finite p -group. We show that if Ω2(G ) is an
extraspecial group then Ω2(G ) = G . If we assume only that
(the subgroup generated by
elements of order p 2 ) is an extraspecial group, then the
situation is more complicated. If p = 2, then either
= G or G is a semidihedral group of order 16. If p > 2, then we can only show that
= Hp(G ).
:
Published Online: 2005-11-18
Published in Print: 2005-11-18
Walter de Gruyter GmbH & Co. KG
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Elements of order at most 4 in finite 2-groups, 2
- On the number of infinite branches in the graph of all p-groups of coclass r
- Polynomial properties in unitriangular matrices. II
- Connectivity of the coset poset and the subgroup poset of a group
- The number of non-solutions of an equation in a group
- Groups, periodic planes and hyperbolic buildings
- Endomorphisms preserving an orbit in a relatively free metabelian group
- Generic units in abelian group rings
- Subgroup growth of Baumslag–Solitar groups
Artikel in diesem Heft
- Elements of order at most 4 in finite 2-groups, 2
- On the number of infinite branches in the graph of all p-groups of coclass r
- Polynomial properties in unitriangular matrices. II
- Connectivity of the coset poset and the subgroup poset of a group
- The number of non-solutions of an equation in a group
- Groups, periodic planes and hyperbolic buildings
- Endomorphisms preserving an orbit in a relatively free metabelian group
- Generic units in abelian group rings
- Subgroup growth of Baumslag–Solitar groups