Startseite Mathematik Automorphism groups of power functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Automorphism groups of power functions

  • Ulrich Dempwolff ORCID logo EMAIL logo
Veröffentlicht/Copyright: 23. Januar 2026
Journal of Group Theory
Aus der Zeitschrift Journal of Group Theory

Abstract

Let 𝐹 be a finite field, and for any integer k 0 , let p k be the power function on 𝐹 defined by p k ( x ) = x k . We determine the group of CCZ automorphisms of p k , i.e. the group of invertible affine transformations which preserve the graph of p k .

Acknowledgements

The author thanks the reviewer for the careful examination of this paper which lead to a distinct improvement of its transparency.

  1. Communicated by: Michael Giudici

References

[1] S. Andreoli, L. Budaghyan, R. Coulter, A. Haukenes, N. Kaleyski and E. Piccione, On a classification of planar functions in characteristic three, Cryptogr. Commun. 17 (2025), no. 4, 823–853. 10.1007/s12095-025-00781-ySuche in Google Scholar

[2] M. Aschbacher, Finite Group Theory, Cambridge Stud. Adv. Math. 10, Cambridge University, Cambridge, 2000. 10.1017/CBO9781139175319Suche in Google Scholar

[3] G. W. Bell, On the cohomology of the finite special linear groups. I, II, J. Algebra 54 (1978), no. 1, 216–238, 239–259. 10.1016/0021-8693(78)90028-5Suche in Google Scholar

[4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235–265. 10.1006/jsco.1996.0125Suche in Google Scholar

[5] J. N. Bray, D. F. Holt and C. M. Roney-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical Groups, London Math. Soc. Lecture Note Ser. 407, Cambridge University, Cambridge, 2013. 10.1017/CBO9781139192576Suche in Google Scholar

[6] P. J. Cameron, Finite permutation groups and finite simple groups, Bull. Lond. Math. Soc. 13 (1981), no. 1, 1–22. 10.1112/blms/13.1.1Suche in Google Scholar

[7] C. Carlet, P. Charpin and V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Des. Codes Cryptogr. 15 (1998), no. 2, 125–156. 10.1023/A:1008344232130Suche in Google Scholar

[8] C. Carlet and S. Mesnager, Four decades of research on bent functions, Des. Codes Cryptogr. 78 (2016), no. 1, 5–50. 10.1007/s10623-015-0145-8Suche in Google Scholar

[9] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, A T L A S of Finite Groups, Oxford University, Eynsham, 1985. Suche in Google Scholar

[10] R. S. Coulter and R. W. Matthews, Planar functions and planes of Lenz–Barlotti class II, Des. Codes Cryptogr. 10 (1997), no. 2, 167–184. 10.1023/A:1008292303803Suche in Google Scholar

[11] U. Dempwolff, Automorphisms and equivalence of bent functions and of difference sets in elementary abelian 2-groups, Comm. Algebra 34 (2006), no. 3, 1077–1131. 10.1080/00927870500442062Suche in Google Scholar

[12] U. Dempwolff, CCZ equivalence of power functions, Des. Codes Cryptogr. 86 (2018), no. 3, 665–692. 10.1007/s10623-017-0350-8Suche in Google Scholar

[13] U. Dempwolff, Automorphisms and isomorphisms of some 𝑝-ary bent functions, J. Algebraic Combin. 51 (2020), no. 4, 527–566. 10.1007/s10801-019-00884-9Suche in Google Scholar

[14] U. Dempwolff, Correction to: CCZ equivalence of power functions, Des. Codes Cryptogr. 90 (2022), no. 2, 473–475. 10.1007/s10623-021-00979-0Suche in Google Scholar

[15] D. I. Deriziotis and M. W. Liebeck, Centralizers of semisimple elements in finite twisted groups of Lie type, J. Lond. Math. Soc. (2) 31 (1985), no. 1, 48–54. 10.1112/jlms/s2-31.1.48Suche in Google Scholar

[16] D. Gorenstein, Finite Groups, Harper & Row, New York, 1968. Suche in Google Scholar

[17] R. L. Griess, Jr., Automorphisms of extra special groups and nonvanishing degree 2 cohomology, Pacific J. Math. 48 (1973), 403–422. 10.2140/pjm.1973.48.403Suche in Google Scholar

[18] S. Guest, J. Morris, C. E. Praeger and P. Spiga, On the maximum orders of elements of finite almost simple groups and primitive permutation groups, Trans. Amer. Math. Soc. 367 (2015), no. 11, 7665–7694. 10.1090/S0002-9947-2015-06293-XSuche in Google Scholar

[19] R. Guralnick, T. Penttila, C. E. Praeger and J. Saxl, Linear groups with orders having certain large prime divisors, Proc. Lond. Math. Soc. (3) 78 (1999), no. 1, 167–214. 10.1112/S0024611599001616Suche in Google Scholar

[20] C. Hering, On linear groups which contain an irreducible subgroup of prime order, Proceedings of the International Conference on Projective Planes, Washington State University, Pullman (1973), 99–105. Suche in Google Scholar

[21] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order, Geom. Dedicata 2 (1974), 425–460. 10.1007/BF00147570Suche in Google Scholar

[22] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II, J. Algebra 93 (1985), no. 1, 151–164. 10.1016/0021-8693(85)90179-6Suche in Google Scholar

[23] B. Huppert, Endliche Gruppen. I, II, III, Grundlehren Math. Wiss. 134, Springer, Berlin, 1967, 1982. 10.1007/978-3-642-64981-3Suche in Google Scholar

[24] C. Jansen, K. Lux, R. Parker and R. Wilson, An Atlas of Brauer Characters, Lond. Math. Soc. Monogr. (N. S.) 11, Clarendon Press, New York, 1995. Suche in Google Scholar

[25] N. S. Kaleyski, Invariants for EA- and CCZ-equivalence of APN and AB functions, Cryptogr. Commun. 13 (2021), no. 6, 995–1023. 10.1007/s12095-021-00541-8Suche in Google Scholar

[26] W. M. Kantor, Linear groups containing a Singer cycle, J. Algebra 62 (1980), no. 1, 232–234. 10.1016/0021-8693(80)90214-8Suche in Google Scholar

[27] W. M. Kantor and A. Seress, Prime power graphs for groups of Lie type, J. Algebra 247 (2002), 370–434. 10.1006/jabr.2001.9016Suche in Google Scholar

[28] P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Note Ser. 129, Cambridge University, Cambridge, 1990. 10.1017/CBO9780511629235Suche in Google Scholar

[29] H. Kurzweil and B. Stellmacher, Theorie der endlichen Gruppen, Springer, Berlin, 1998. 10.1007/978-3-642-58816-7Suche in Google Scholar

[30] M. W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. Lond. Math. Soc. (3) 50 (1985), no. 3, 426–446. 10.1112/plms/s3-50.3.426Suche in Google Scholar

[31] M. W. Liebeck, The affine permutation groups of rank three, Proc. Lond. Math. Soc. (3) 54 (1987), no. 3, 477–516. 10.1112/plms/s3-54.3.477Suche in Google Scholar

[32] F. Lübeck, Small degree representations of finite Chevalley groups in defining characteristic, LMS J. Comput. Math. 4 (2001), 135–169. 10.1112/S1461157000000838Suche in Google Scholar

[33] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math. 572 (2004), 167–195. 10.1515/crll.2004.048Suche in Google Scholar

[34] A. Pott, Almost perfect and planar functions, Des. Codes Cryptogr. 78 (2016), no. 1, 141–195. 10.1007/s10623-015-0151-xSuche in Google Scholar

[35] R. Steinberg, Lectures on Chevalley Groups, Yale University, New Haven, 1967. Suche in Google Scholar

[36] R. Steinberg, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc. 80, American Mathematical Society, Providence, 1968. 10.1090/memo/0080Suche in Google Scholar

[37] M. Suzuki, Group Theory. I, II, Grundlehren Math. Wiss. 247, Springer, Berlin, 1982. 10.1007/978-3-642-61804-8Suche in Google Scholar

[38] J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383–437. 10.1090/S0002-9904-1968-11953-6Suche in Google Scholar

[39] P. H. Tiep and A. E. Zalesskii, Some aspects of finite linear groups: A survey, J. Math. Sci. 100 (2000), 1893–1914. 10.1007/BF02677502Suche in Google Scholar

[40] D. L. Winter, The automorphism group of an extraspecial 𝑝-group, Rocky Mountain J. Math. 2 (1972), no. 2, 159–168. 10.1216/RMJ-1972-2-2-159Suche in Google Scholar

[41] S. Yoshiara, Equivalences of power APN functions with power or quadratic APN functions, J. Algebraic Combin. 44 (2016), no. 3, 561–585. 10.1007/s10801-016-0680-zSuche in Google Scholar

[42] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265–284. 10.1007/BF01692444Suche in Google Scholar

[43] ATLAS of Finite Group Representations – Version 3.004/HTML 4.01/CSS, 2020. Suche in Google Scholar

Received: 2023-05-10
Revised: 2025-09-23
Published Online: 2026-01-23

© 2026 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2023-0071/html
Button zum nach oben scrollen