Startseite Sandwich classification for GLn(R), O2n(R) and U2n(R,Λ) revisited
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sandwich classification for GLn(R), O2n(R) and U2n(R,Λ) revisited

  • Raimund Preusser EMAIL logo
Veröffentlicht/Copyright: 2. September 2017

Abstract

Let n be a natural number greater than or equal to 3, R a commutative ring and σGLn(R). We show that tkl(σij) (resp. tkl(σii-σjj)), where ij and kl can be expressed as a product of eight (resp. 24) matrices of the form σ±1ϵ, where ϵEn(R). We prove similar results for the orthogonal groups O2n(R) and the hyperbolic unitary groups U2n(R,Λ) under the assumption that R is commutative and n3. This yields new, very short proofs of the Sandwich Classification Theorems for the groups GLn(R), O2n(R) and U2n(R,Λ).


Communicated by John S. Wilson


References

[1] E. Abe, Normal subgroups of Chevalley groups over commutative rings, Algebraic K-Theory and Algebraic Number Theory (Honolulu 1987), Contemp. Math. 83, American Mathematical Socíety, Providence (1989), 1–17. 10.1090/conm/083/991973Suche in Google Scholar

[2] A. Bak, The stable structure of quadratic modules, Ph.D. thesis, Columbia University, 1969. Suche in Google Scholar

[3] A. Bak and N. Vavilov, Structure of hyperbolic unitary groups. I: Elementary subgroups, Algebra Colloq. 7 (2000), no. 2, 159–196. 10.1007/s10011-000-0159-1Suche in Google Scholar

[4] H. Bass, K-theory and stable algebra, Publ. Math. Inst. Hautes Études Sci. 22 (1964), 5–60. 10.1007/BF02684689Suche in Google Scholar

[5] H. Bass, Algebraic K-Theory, W. A. Benjamin, New York, 1968. Suche in Google Scholar

[6] Z. I. Borevich and N. A. Vavilov, Arrangement of subgroups in the general linear group over a commutative ring, Trudy Mat. Inst. Steklov. 165 (1984), 24–42. Suche in Google Scholar

[7] I. Z. Golubčik, The full linear group over an associative ring, Uspehi Mat. Nauk 28 (1973), no. 3(171), 179–180. Suche in Google Scholar

[8] V. A. Petrov, Decomposition of transvections: An algebro-geometric approach, Algebra i Analiz 28 (2016), no. 1, 150–157. 10.1090/spmj/1440Suche in Google Scholar

[9] R. Preusser, Structure of hyperbolic unitary groups II: Classification of E-normal subgroups, Algebra Colloq. 24 (2017), no. 2, 195–232. 10.1142/S1005386717000128Suche in Google Scholar

[10] A. Stepanov and N. Vavilov, Decomposition of transvections: A theme with variations, K-Theory 19 (2000), no. 2, 109–153. 10.1023/A:1007853629389Suche in Google Scholar

[11] A. V. Stepanov, On the arrangement of subgroups normalized by a fixed subgroup, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 198 (1991), 92–102, 113. Suche in Google Scholar

[12] A. V. Stepanov, A new look at the decomposition of unipotents and the normal structure of Chevalley groups, Algebra i Analiz 28 (2016), no. 3, 161–173. 10.1090/spmj/1456Suche in Google Scholar

[13] L. N. Vaserstein, On the normal subgroups of GLn over a ring, Algebraic K-Theory (Evanston 1980), Lecture Notes in Math. 854, Springer, Berlin (1981), 456–465. 10.1007/BFb0089533Suche in Google Scholar

[14] L. N. Vaserstein, On normal subgroups of Chevalley groups over commutative rings, Tohoku Math. J. (2) 38 (1986), no. 2, 219–230. 10.2748/tmj/1178228489Suche in Google Scholar

[15] N. A. Vavilov, An A3-proof of structure theorems for Chevalley groups of types E6 and E7. II. Fundamental lemma, Algebra i Analiz 23 (2011), no. 6, 1–31. 10.1090/S1061-0022-2012-01223-9Suche in Google Scholar

[16] N. A. Vavilov, Decomposition of unipotents for E6 and E7: 25 years after, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 430 (2014), 32–52. Suche in Google Scholar

[17] N. A. Vavilov and M. R. Gavrilovich, A2-proof of structure theorems for Chevalley groups of types E6 and E7, Algebra i Analiz 16 (2004), no. 4, 54–87. 10.1090/S1061-0022-05-00871-XSuche in Google Scholar

[18] N. A. Vavilov, M. R. Gavrilovich and S. I. Nikolenko, The structure of Chevalley groups: A proof from The Book, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 330 (2006), 36–76, 271–272. 10.1007/s10958-007-0003-ySuche in Google Scholar

[19] N. A. Vavilov and V. G. Kazakevich, More variations on the decomposition of transvections, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 375 (2010), 32–47, 209–210. 10.1007/s10958-010-0137-1Suche in Google Scholar

[20] N. A. Vavilov and S. I. Nikolenko, A2-proof of structure theorems for a Chevalley group of type F4, Algebra i Analiz 20 (2008), no. 4, 27–63. 10.1090/S1061-0022-09-01060-7Suche in Google Scholar

[21] N. A. Vavilov, E. B. Plotkin and A. V. Stepanov, Calculations in Chevalley groups over commutative rings, Dokl. Akad. Nauk SSSR 307 (1989), no. 4, 788–791. Suche in Google Scholar

[22] J. S. Wilson, The normal and subnormal structure of general linear groups, Proc. Cambridge Philos. Soc. 71 (1972), 163–177. 10.1017/S0305004100050416Suche in Google Scholar

Received: 2017-5-5
Revised: 2017-7-21
Published Online: 2017-9-2
Published in Print: 2018-1-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 10.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2017-0028/html
Button zum nach oben scrollen