Startseite Symmetric powers of Nat SL(2,𝕂)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Symmetric powers of Nat SL(2,𝕂)

  • Adrien Deloro EMAIL logo
VerĂśffentlicht/Copyright: 14. Januar 2016

Abstract

In this paper, we identify the representations 𝕂⁢[Xk,Xk-1⁢Y,…,Yk] among abstract ℤ⁢[SL2⁡(𝕂)]-modules. One result is on ℚ⁢[SL2⁡(ℤ)]-modules of nilpotence length at most 5 and generalises a classical “quadratic” theorem by Smith and Timmesfeld; there are reasons to believe that this generalisation is close to optimal. Another result is on extending the linear structure on the module from the prime field to 𝕂. All proofs are by computation in the group ring using the Steinberg relations.

References

[1] Andersen H. H., Jørgensen J. and Landrock P., The projective indecomposable modules of SL⁢(2,pn), Proc. Lond. Math. Soc. (3) 46 (1983), no. 1, 38–52. 10.1112/plms/s3-46.1.38Suche in Google Scholar

[2] Cherlin G. and Deloro A., Small representations of SL2 in the finite Morley rank category, J. Symb. Log. 77 (2012), no. 3, 919–933. 10.2178/jsl/1344862167Suche in Google Scholar

[3] Deloro A., Changes to a theorem of Timmesfeld. I: Quadratic actions, Confluentes Math. 5 (2013), no. 2, 23–41. Suche in Google Scholar

[4] Deloro A., Symmetric powers of Nat⁡𝔰⁢𝔩2⁢(𝕂), Comm. Algebra (2016), 10.1080/ 00927872.2014.900690. 10.1080/ 00927872.2014.900690Suche in Google Scholar

[5] GrĂźninger M., On cubic action of a rank one group, preprint 2011, http://arxiv.org/abs/1106.2310v2. 10.1090/memo/1356Suche in Google Scholar

[6] Lyndon R. C. and Schupp P. E., Combinatorial Group Theory, Classics Math., Springer, Berlin, 2001. 10.1007/978-3-642-61896-3Suche in Google Scholar

[7] Serre J.-P., Trees, Springer Monogr. Math., Springer, Berlin, 2003. Suche in Google Scholar

[8] Smith S. D., Quadratic action and the natural module for SL2⁢(k), J. Algebra 127 (1989), no. 1, 155–162. 10.1016/0021-8693(89)90280-9Suche in Google Scholar

[9] Timmesfeld F. G., Abstract Root Subgroups and Simple Groups of Lie Type, Monogr. Math. 95, Birkhäuser, Basel, 2001. 10.1007/978-3-0348-7594-3Suche in Google Scholar

Received: 2015-4-30
Revised: 2015-10-1
Published Online: 2016-1-14
Published in Print: 2016-7-1

Š 2016 by De Gruyter

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jgth-2015-0049/html
Button zum nach oben scrollen