Startseite Investigation the impact of active fault-induced vertical displacement on land subsidence rates using GNSS CORS data in northern coastal cities of Central Java, Indonesia
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation the impact of active fault-induced vertical displacement on land subsidence rates using GNSS CORS data in northern coastal cities of Central Java, Indonesia

  • Muhammad Arif Mumtaz , Cecep Pratama ORCID logo EMAIL logo , Leni Sophia Heliani , Dwi Lestari , Krishna Duta Wibisono , Zulviana Rahmadina , Nur Intan Komala Dewi , Nicholas Genta Setiawan Gunawan und Sidik Tri Wibowo
Veröffentlicht/Copyright: 27. August 2025
Veröffentlichen auch Sie bei De Gruyter Brill
Journal of Applied Geodesy
Aus der Zeitschrift Journal of Applied Geodesy

Abstract

Land subsidence is commonly observed along the coastal regions of Java Island, particularly in the northern part of Central Java. This phenomenon often contributes to the intensification of coastal flooding. Subsidence rates are influenced by multiple factors, which might also relate to tectonic movements associated with active fault structures. In this study, we investigate the contribution of active fault-induced deformation to land subsidence in northern coastal cities of Central Java. We modeled the surface displacements resulting from active faults using the elastic half-space approach. We analyzed geodetic data from Continuously Operating Reference Stations (CORS) situated along the northern coast, covering the period from 2015 to 2019. The analysis revealed notable land subsidence at Pekalongan and Tegal, with annual rates of −122.54 mm/year and −11.04 mm/year, respectively. Statistical testing of annual displacement rates indicated that fault-induced surface movement was significant only at Semarang City. Conversely, the displacement observed at CORS with pronounced subsidence was not statistically significant. These findings suggest that active fault-related displacements do not play a dominant role in driving land subsidence in the study area. Instead, the magnitude of their influence appears to depend on the proximity of the faults to observation sites and the relative level of earthquake potential of the fault.


Corresponding author: Cecep Pratama, Department of Geodetic Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia, E-mail: 

Acknowledgments

The authors would like to thank the publishers and anonymous reviewers who have adeptly evaluated our manuscripts. We are also grateful to Rino Salman, Ph.D., who has compiled fault deformation modeling scripts. Also, we thank the Indonesian Geospatial Information Agency (BIG) for providing CORS observation data. The characteristics of the fault are obtained from the 2017 Indonesia Earthquake Source and Hazard Map published by the Indonesian National Earthquake Study Center under the Research and Development Agency, Ministry of Public Works and Public Housing, Indonesia. Some figures were generated using Generic Mapping Tools [43].

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: This study was partially supported by the 2024 Department of Geodetic Engineering Fund.

  7. Data availability: Not applicable.

References

1. Susilo, S, Salman, R, Hermawan, W, Widyaningrum, R, Wibowo, ST, Lumban-Gaol, YA, et al.. GNSS land subsidence observations along the northern coastline of Java, Indonesia. Sci Data 2023;10:421. https://doi.org/10.1038/s41597-023-02274-0.Suche in Google Scholar PubMed PubMed Central

2. Abidin, HZ, Andreas, H, Gumilar, I, Sidiq, TP, Fukuda, Y. Land subsidence in coastal city of Semarang (Indonesia): characteristics, impacts and causes. Geomat Nat Hazards Risk 2013;4:226–40. https://doi.org/10.1080/19475705.2012.692336.Suche in Google Scholar

3. Aditiya, A, Ito, T. Present-day land subsidence over Semarang revealed by time series InSAR new small baseline subset technique. Int J Appl Earth Obs Geoinf 2023;125:103579. https://doi.org/10.1016/j.jag.2023.103579.Suche in Google Scholar

4. Sarah, D, Mulyono, A, Satriyo, NA, Soebowo, E, Wirabuana, T. Towards sustainable land subsidence mitigation in Semarang and Demak, Central Java: analysis using DPSIR framework. J Water Land Dev 2022:150–65. https://doi.org/10.24425/jwld.2022.142317.Suche in Google Scholar

5. Nashrrullah, S, Aprijanto, Pasaribu, JM, Hazarika, MK, Samarakoon, L. Study of flood inundation in Pekalongan, Central Java. Int. J. Remote Sens. Earth Sci 2013;10:76–83. https://doi.org/10.30536/j.ijreses.2013.v10.a1845.Suche in Google Scholar

6. Hakim, WL, Fadhillah, MF, Lee, KJ, Lee, SJ, Chae, SH, Lee, CW. Land subsidence and groundwater storage assessment using ICOPS, GRACE, and susceptibility mapping in Pekalongan, Indonesia. IEEE Trans Geosci Rem Sens 2023;61:1–25. https://doi.org/10.1109/TGRS.2023.3324043.Suche in Google Scholar

7. Handiani, DN, Heriati, A, Suciaty, F. Coastal vulnerability assessment along the North Java coastlines-Indonesia. J Segara 2022;18:1. https://doi.org/10.15578/segara.v18i1.10664.Suche in Google Scholar

8. Yuwono, BD, Subiyanto, S, Pratomo, AS, Najib, N. Time series of land subsidence rate on coastal demak using gnss cors udip and dinsar. E3S Web Conf 2019;94:04004. https://doi.org/10.1051/e3sconf/20199404004.Suche in Google Scholar

9. Chaussard, E, Amelung, F, Abidin, H, Hong, SH. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens Environ 2013;128:150–61. https://doi.org/10.1016/j.rse.2012.10.015.Suche in Google Scholar

10. Sidiq, TP, Gumilar, I, Abidin, HZ, Meilano, I, Purwarianti, A, Lestari, R. Spatial distribution and monitoring of land subsidence using sentinel-1 SAR data in Java, Indonesia. Appl Sci 2025;15:1–25. https://doi.org/10.3390/app15073732.Suche in Google Scholar

11. Yastika, PE, Shimizu, N, Abidin, HZ. Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using envisat-ASAR, ALOS-PALSAR, and sentinel-1A SAR data. Adv Space Res 2019;63:1719–36. https://doi.org/10.1016/j.asr.2018.11.008.Suche in Google Scholar

12. Dewi, RS, Bijker, W, Stein, A, Marfai, MA. Fuzzy classification for shoreline change monitoring in a part of the northern coastal area of Java, Indonesia. Remote Sens 2016;8:190. https://doi.org/10.3390/rs8030190.Suche in Google Scholar

13. Whittaker, BN, Reddish, DJ. Subsidence: occurrence, prediction and control (developments in geotechnical engineering, 56). Int J Rock Mech Min Sci Geomech Abstr 1990;27:A127. https://doi.org/10.1016/0148-9062(90)95372-8.Suche in Google Scholar

14. Ojha, C, Werth, S, Shirzaei, M. Recovery of aquifer-systems in Southwest US following 2012–2015 drought: evidence from InSAR, GRACE and groundwater level data. J Hydrol 2020;587:124943. https://doi.org/10.1016/j.jhydrol.2020.124943.Suche in Google Scholar

15. Sutanta, H. Spatial modeling of the impact of land subsidence and sea level rise in a coastal urban setting, case study: Semarang, Central Java, Indonesia; 2002. [Online]. Available from: http://essay.utwente.nl/99884/.Suche in Google Scholar

16. Andreas, H, Zainal Abidin, H, Anggreni Sarsito, D, Meilano, I, Susilo, S. Investigating the tectonic influence to the anthropogenic subsidence along northern coast of Java Island Indonesia using GNSS data sets. E3S Web Conf 2019;94:04005. https://doi.org/10.1051/e3sconf/20199404005.Suche in Google Scholar

17. Marfai, MA, King, L. Monitoring land subsidence in Semarang, Indonesia. Environ Geol 2007;53:651–9. https://doi.org/10.1007/s00254-007-0680-3.Suche in Google Scholar

18. Pustlitbang PUPR. Peta sumber dan bahaya gempa Indonesia tahuan 2017. Kabupaten Bandung: Pusat Penelitian dan Pengembangan Perumahan dan Pemukiman Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat; 2017.Suche in Google Scholar

19. Koulali, A, McClusky, S, Susilo, S, Leonard, Y, Cummins, P, Tregoning, P, et al.. The kinematics of crustal deformation in Java from GPS observations: implications for fault slip partitioning. Earth Planet Sci Lett 2017;458:69–79. https://doi.org/10.1016/j.epsl.2016.10.039.Suche in Google Scholar

20. Nguyen, N, Griffin, J, Cipta, A, Cummins, PR. Indonesia’s historical earthquakes: modelled examples for improving the national hazard map. Canberra 2015;23:1–59. https://doi.org/10.11636/Record.2015.023.Suche in Google Scholar

21. Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 1992;82:1018–40. https://doi.org/10.1029/92JB00178.Suche in Google Scholar

22. Engelen, GB, Kloosterman, FH. Regional hydrological systems analysis in the northern coastal plain of Java, Indonesia. Water Sci Technol Libr 1996;20:140–4. https://doi.org/10.1007/978-94-009-0233-6_19.Suche in Google Scholar

23. Geological Research and Development Centre of Indonesia. Regional geological map, sheet: middle part of java scale 1:500,000; 1999. https://geologi.esdm.go.id/geomap/pages/preview/peta-geologi-lembar-jawa-bagian-tengah [Accessed 20 Nov 2024].Suche in Google Scholar

24. Yananto, A, Yulianto, F, Wibowo, M, Rahili, N, Husada Fadjar Perdana, D, Wiguna, EA, et al.. Integration sentinel-1 SAR data and machine learning for land subsidence in-depth analysis in the north coast of Central Java, Indonesia. Earth Sci Inform 2024;17:4707–38. https://doi.org/10.1007/s12145-024-01413-4.Suche in Google Scholar

25. Kuehn, F, Albiol, D, Cooksley, G, Duro, J, Granda, J, Haas, S, et al.. Detection of land subsidence in Semarang, Indonesia, using stable points network (SPN) technique. Environ Earth Sci 2010;60:909–21. https://doi.org/10.1007/s12665-009-0227-x.Suche in Google Scholar

26. Yuwono, BD, Abidin, HZ, Poerbandono, Andreas, H, Pratama, ASP, Gradiyanto, F. Mapping of flood hazard induced by land subsidence in Semarang City, Indonesia, using hydraulic and spatial models. Nat Hazards 2024;120:5333–68. https://doi.org/10.1007/s11069-023-06398-9.Suche in Google Scholar

27. Pratama, C, Susanta, FF, Ilahi, R, Khomaini, AF, Abdillah, HWK. Coseismic displacement accumulation between 1996 and 2019 using a global empirical law on Indonesia continuously operating reference station (InaCORS). JGISE J Geospatial Inf Sci Eng 2019;2. https://doi.org/10.22146/jgise.51130.Suche in Google Scholar

28. Herring, TA, King, RW. Introduction to GAMIT/GLOBK. 2015:1–50 [Online]. Available from: http://geoweb.mit.edu/gg/docs/Intro_GG.pdf.Suche in Google Scholar

29. Altamimi, Z, Rebischung, P, Métivier, L, Collilieux, X. ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 2016;121:6109–31. https://doi.org/10.1002/2016JB013098.Suche in Google Scholar

30. Lyard, F, Lefevre, F, Letellier, T, Francis, O. Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 2006;56:394–415. https://doi.org/10.1007/s10236-006-0086-x.Suche in Google Scholar

31. Ghilani, CD. Adjustment computations: spatial data analysis, 5th ed. Canada: John Wiley & Sons, Inc.; 2010.Suche in Google Scholar

32. Blaser, L, Krüger, F, Ohrnberger, M, Scherbaum, F. Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bull Seismol Soc Am 2010;100:2914–26. https://doi.org/10.1785/0120100111.Suche in Google Scholar

33. Wells, DL, Coppersmith, KJ. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 1994;84:974–1002. https://doi.org/10.1785/bssa0840040974.Suche in Google Scholar

34. Ragan, DM. Structural geology: an introduction to geometrical techniques, 4th ed. United States of America: Cambridge University Press; 2009.10.1017/CBO9780511816109Suche in Google Scholar

35. Girty, GH. "Faults" in perilous earth: understanding processes behind natural disasters. v1.0. San Diego: Department of Geological Sciences, San Diego University; 2009:1–9.Suche in Google Scholar

36. White, NJ, Jackson, JA, McKenzie, DP. The relationship between the geometry of normal faults and that of the sedimentary layers in their hanging walls. J Struct Geol 1986;8:897–909. https://doi.org/10.1016/0191-8141(86)90035-0.Suche in Google Scholar

37. Fukahata, Y, Wright, TJ. A non-linear geodetic data inversion using ABIC for slip distribution on a fault with an unknown dip angle. Geophys J Int 2008;173:353–64. https://doi.org/10.1111/j.1365-246X.2007.03713.x.Suche in Google Scholar

38. Wang, G. The 95% confidence interval for GNSS-derived site velocities. J Survey Eng 2022;148. https://doi.org/10.1061/(asce)su.1943-5428.0000390.Suche in Google Scholar

39. Cui, ZD. Land subsidence induced by the engineering-environmental effect. Springer Singapore; 2018. [Online]. Available from: https://link.springer.com/book/10.1007/978-981-10-8040-1.10.1007/978-981-10-8040-1_2Suche in Google Scholar

40. Heliani, LS, Pratama, C, Danardono, Widjajanti, N, Hanudin, E. Spatiotemporal variation of vertical displacement driven by seasonal hydrological water storage changes in Kalimantan, Indonesia from GPS observation. Geodesy Geodyn 2020;11:350–7. https://doi.org/10.1016/j.geog.2020.06.003.Suche in Google Scholar

41. Saibi, H, Aboud, E, Setyawan, A, Ehara, S, Nishijima, J. Gravity data analysis of Ungaran Volcano, Indonesia. Arabian J Geosci 2012;5:1047–54. https://doi.org/10.1007/s12517-011-0303-x.Suche in Google Scholar

42. Purwaningsih, REY, Sekarsari, A, Sari, TW, Pratama, C, Wibowo, ST. Active tectonics of the eastern java based on a decade of recent continuous geodetic observation. Geodesy Geodyn 2022;13:376–85. https://doi.org/10.1016/j.geog.2021.12.004.Suche in Google Scholar

43. Wessel, P, Luis, JF. The GMT/matlab toolbox. Geochem Geophys Geosyst 2017;18:811–23. https://doi.org/10.1002/2016GC006723.Suche in Google Scholar

Received: 2025-02-03
Accepted: 2025-05-06
Published Online: 2025-08-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jag-2025-0014/html
Button zum nach oben scrollen