Startseite Quality analysis of reference GPS stations in Ecuador
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quality analysis of reference GPS stations in Ecuador

  • Richard Serrano-Agila EMAIL logo , Rosendo Romero-Andrade , Daniel Hernández-Andrade und Wilman Gonzalo Merino-Vivianco
Veröffentlicht/Copyright: 30. Juni 2025
Veröffentlichen auch Sie bei De Gruyter Brill
Journal of Applied Geodesy
Aus der Zeitschrift Journal of Applied Geodesy

Abstract

Since 2008, Ecuador has established a Permanent Geodetic Network (REGME), to support geodetic research in the country. The REGME network plays a critical role in monitoring tectonic activity and crustal deformation throughout Ecuador. However, no comprehensive quality analysis has been conducted for REGME stations. The network has provided data from 70 continuous GPS stations across Ecuador, covering a period of 16 years. Shell scripts were developed on UNIX to manage and process REGME raw data. The data were converted from HATANAKA to RINEX format using CRX2RNX, and the sampling rate was standardized to 30 s using TEQC software. Only GPS signals were selected due to variations in the stations’ capabilities to track different signals. This study establishes a crucial foundation for future research on crustal deformation and geophysical phenomena in the region, offering valuable insights that will enhance both local and global geodetic efforts.


Corresponding author: Richard Serrano-Agila, Departamento de Geociencias, Universidad Técnica Particular de Loja, Loja, Ecuador, E-mail: 

Acknowledgments

We thank to Ecuador Military Geographic Institute for getting access to REGME data. This research was supported by Universidad Técnica Particular de Loja, Ecuador, through Temporal Variations in Geodetic Positions Project.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: https://www.geoportaligm.gob.ec/portal/.

References

1. Metzger, S, Ischuk, A, Deng, Z, Ratschbacher, L, Perry, M, Kufner, SK, et al.. Dense GNSS profiles across the Northwestern tip of the India-Asia collision zone: triggered slip and westward flow of the peter the first range, Pamir, into the Tajik depression. Tectonics 2020;39:1–20. https://doi.org/10.1029/2019tc005797.Suche in Google Scholar

2. Sharma, G, Kannaujiya, S, Gautam, PKR, Taloor, AK, Champatiray, PK, Mohanty, S. Crustal deformation analysis across Garhwal Himalaya: part of western Himalaya using GPS observations. Quat Int 2021;575–576:153–9. https://doi.org/10.1016/j.quaint.2020.08.025.Suche in Google Scholar

3. García-Armenteros, JA. Topo-Iberia CGPS network: a new 3D crustal velocity field in the Iberian Peninsula and Morocco based on 11 years (2008–2019). GPS Solut 2023;27:155. https://doi.org/10.1007/s10291-023-01484-8.Suche in Google Scholar

4. Tsakiri, M, Sioulis, A, Piniotis, G. The use of low-cost, single-frequency GNSS receivers in mapping surveys. Surv Rev 2018;50:46–56. https://doi.org/10.1080/00396265.2016.1222344.Suche in Google Scholar

5. Sharma, G, Champati ray, PK, Mohanty, S, Kannaujiya, S. Ionospheric TEC modelling for earthquakes precursors from GNSS data. Quat Int 2017;462:65–74. https://doi.org/10.1016/j.quaint.2017.05.007.Suche in Google Scholar

6. Sharma, G, Romero-Andrade, R, Taloor, AK, Ganeshan, G, Sarma, KK, Aggarwal, SP. 2 – D ionosphere TEC anomaly before January 28 , 2020 , Cuba earthquake observed from a network of GPS observations data. Arabian J Geosci 2022;15:1–11. https://doi.org/10.1007/s12517-022-10605-5.Suche in Google Scholar

7. Kaloop, MR, Yigit, CO, Dindar, AA, Elsharawy, M, Hu, JW. Evaluation of the high-rate GNSS-PPP method for vertical structural motion. Surv Rev 2020;52:159–71. https://doi.org/10.1080/00396265.2018.1534362.Suche in Google Scholar

8. Romero-Andrade, R, Trejo-Soto, ME, Acosta-González, LE, Hernández-Andrade, D, Nayak, K, Hernández-Columbie, V, et al.. Displacements study of a dam using low-cost GNSS receivers, high precision leveling and Finite Element Model. Adv Geodesy and Geoinf 2024:55. [Internet] Available from: https://journals.pan.pl/dlibra/publication/150684/edition/133869/content.10.24425/agg.2024.150684Suche in Google Scholar

9. Manandhar, S, Meng, YS. Analysis on the effect of different elevation cut-off angles on GPS time transfer. Meas Sens 2021;18:100196. https://doi.org/10.1016/j.measen.2021.100196.Suche in Google Scholar

10. Angrisano, A, Ascione, S, Cappello, G, Gioia, C, Gaglione, S. Application of “Galileo high accuracy Service” on single-point positioning. Sensors 2023;23:4223. https://doi.org/10.3390/s23094223.Suche in Google Scholar PubMed PubMed Central

11. Souto, MS. Análisis de calidad y preprocesamiento de datos GNSS de la estación permanente UCOR (Córdoba, Argentina). Rev Fac Ciencias Exactas Fis Nat 2014;1:91. [Internet] Available from: https://revistas.unc.edu.ar/index.php/FCEFyN/article/view/6971.Suche in Google Scholar

12. Hernández-Andrade, D, Romero-Andrade, R, Sharma, G, Trejo-Soto, ME, Cabanillas-Zavala, JL. Quality assessment of continuous operating reference stations (CORS) – GPS stations in Mexico. Geod Geodyn 2022;13:275–87. https://doi.org/10.1016/j.geog.2021.12.003.Suche in Google Scholar

13. Hu, Y, Cheng, L, Wang, X. Quality analysis of the campaign GPS stations observation in Northeast and North China. Geod Geodyn 2016;7:87–94. [Internet]. https://doi.org/10.1016/j.geog.2016.03.008.Suche in Google Scholar

14. Quan, Y, Lau, L, Roberts, GW, Meng, X. Measurement signal quality assessment on all available and new signals of multi-GNSS (GPS, GLONASS, Galileo, BDS, and QZSS) with real data. J Navig 2016;69:313–34. https://doi.org/10.1017/s0373463315000624.Suche in Google Scholar

15. Cole, B, Awange, JL, Saleem, A. Environmental spatial data within dense tree cover: exploiting multi-frequency GNSS signals to improve positional accuracy. Int J Environ Sci Technol 2020;17:2697–706. https://doi.org/10.1007/s13762-020-02634-y.Suche in Google Scholar

16. Lee, D, Cho, J, Suh, Y, Hwang, J, Yun, H. A new window-based program for quality control of GPS sensing data. Rem Sens (Basel). 2012;4:3168–83. https://doi.org/10.3390/rs4103168.Suche in Google Scholar

17. Franco-Patiño, DM, Seco-Granados, G, Dovis, F. Signal quality checks for multipath detection in GNSS. In: 2013 International Conference on Localization and GNSS, ICL-GNSS 2013. Turin, Italy; 2013:1–6 pp.10.1109/ICL-GNSS.2013.6577268Suche in Google Scholar

18. Vázquez-Becerra, GE, Grejner-Brzeziska, DA. A case of study for pseudorange multipath estimation and analysis: TAMDEF GPS network. Geofis Int 2012;51:63–72. https://doi.org/10.22201/igeof.00167169p.2012.51.1.146.Suche in Google Scholar

19. Vázquez, GE, Bennett, R, Spinler, J. Assessment of pseudorange multipath at continuous GPS stations in Mexico. Positioning 2013;04:253–65. https://doi.org/10.4236/pos.2013.43025.Suche in Google Scholar

20. Xiao, Y, Yao, MH, Tang, SH, Liu, HF, Xing, PW, Zhang, Y. Data quality check and visual analysis of Cors station based on Anubis software. ISPRS – Int Arch Photogram, Rem Sens Spatial Inf Sci 2020;XLII-3/W10(November 2019):1295–300. https://doi.org/10.5194/isprs-archives-xlii-3-w10-1295-2020.Suche in Google Scholar

21. Puskas, CM, Meertens, CM, Phillips, DA, Blume, F, Rost, M, UNAVCO. Introduction to Anubies software for GNSS quality control in the GAGE facility and NOTA. UNAVCO. UNAVCO; 2019. [Internet] Available from: https://www.unavco.org/data/gps-gnss/derived-products/docs/Poster_2019_SAGE-GAGE_Workshop_Puskas_Introduction-to-Anubis-software-for-GNSS-quality-control-in-the-GAGE-Facility-and-NOTA.pdf.Suche in Google Scholar

22. Estey, LH, Meertens, CM. TEQC: the multi-purpose toolkit for GPS/GLONASS data. GPS Solut 1999;3:42–9. https://doi.org/10.1007/pl00012778.Suche in Google Scholar

23. García-Armenteros, JA. Quality assessment of the Topo-Iberia CGPS stations and data quality’s effects on postfit ionosphere-free phase residuals. Geod Geodyn 2023;15:189–99. [Internet]. https://doi.org/10.1016/j.geog.2023.07.006.Suche in Google Scholar

24. García-Armenteros, JA. Monitorización Y control de calidad de las estaciones de La red Cgps Topo-Iberia-UJA. Eur Sci J 2020;16:1. https://doi.org/10.19044/esj.2020.v16n24p1.Suche in Google Scholar

25. Hernández-Andrade, D, Romero-Andrade, R, Cabanillas-Zavala, JL, Ávila-Cruz, M, Trejo-Soto, ME, Vega-Ayala, A. Análisis de calidad de las observaciones GPS en estaciones de operación continua de libre acceso en México. Eur Sci J 2020;16:332. https://doi.org/10.19044/esj.2020.v16n33p332.Suche in Google Scholar

26. Lau, L, Tai, KW. A data quality assessment approach for high-precision GNSS continuously operating reference stations (CORS) with case studies in Hong Kong and Canada/USA. Rem Sens (Basel). 2023;15:1925. https://doi.org/10.3390/rs15071925.Suche in Google Scholar

27. Hatanaka, Y. A compression format and tools for GNSS observation data. In: Bulletin of the geographical survey institute. 2008, vol 55:21–30 pp. Available from: https://www.gsi.go.jp/ENGLISH/Bulletin55.html.Suche in Google Scholar

28. Gurtner, W. Innovation: RINEX--The receiver independent exchange format. GPS World 1994;5:48–53.Suche in Google Scholar

29. Bradke, M, Ruddick, R, Rebischung, P, Steigenberger, P, Söhne, W, Maggert, D. Guidelines for continuously operating reference stations in the IGS. International GNSS Service. USA: IGS; 2023:1–9 pp.Suche in Google Scholar

30. Llanes-Hernández, RM, Romero-Andrade, R, Guzmán-Galindo, TD, Santiago-Sánchez, LG, Serrano-Agila, RG. Control de calidad de las observaciones GPS de la Red Geodésica Nacional Activa en México del periodo 2020-2023. Eur Sci J, ESJ 2024;20:1. https://doi.org/10.19044/esj.2024.v20n21p1.Suche in Google Scholar

31. Kamatham, Y., analysis and prediction of multipath error for static GNSS applications. In: 2018 Conference on Signal Processing and Communication Engineering Systems. SPACES, Vijayawada, India; 2018:62–5 pp.10.1109/SPACES.2018.8316317Suche in Google Scholar

Received: 2024-08-22
Accepted: 2025-06-01
Published Online: 2025-06-30

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jag-2024-0073/html
Button zum nach oben scrollen