Abstract
The use of robots is widespread in the field of construction nowadays. Robots may be mobile or static depending on the specific task or application. One of the major challenges when implementing mobile robots is localisation. In the field of robotics, localisation is often performed in a relative sense, however some applications require absolute localisation. In order to provide absolute positions, appropriate sensors such as Global Navigation Satellite Systems (GNSS) or total stations can be employed. The underlying task is embedded within the Germany´s Excellence Strategy “Integrative Computational Design and Construction for Architecture (IntCDC)” funded by the German Research Foundation (DFG). The specific sub-project deals with issues of robot-robot collaboration and specifically aims the provision of absolute position and orientation, designated as pose, of a mobile construction robot. The determined pose information supports different control loops of the robot including automated driving, steering and tool operations. The choice of the sensor system favoured a robotic total station (RTS), because of its real-time capability and measurement accuracy. The measurement system is coupled with an Inertial Measurement Unit (IMU) for orientation. To counteract line-of-sight interference between the RTS and the target, the contribution proposes the use of a network of four spatially evenly distributed RTSs. The quality characteristics of different pose determination procedures of a mobile construction robot are investigated using methods from the geodetic network theory. Conclusions about accuracy and reliability distribution across the construction site are presented numerically and graphically.
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: 390831618
Funding statement: Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany´s Excellence Strategy – EXC 2120/1 – 390831618.
References
[1] Cai, S., Ma, Z., Skibniewski, M., Guo, J., Yun, L. (2018): Application of Automation and Robotics Technology in High-Rise Building Construction: An Overview. In: 35th International Symposium on Automation and Robotics in Construction (ISARC 2018).10.22260/ISARC2018/0044Suche in Google Scholar
[2] IntCDC (2018): Integrative Computational Design and Construction for Architecture. Cluster of Excellence. Presentation at the General Assembly, University of Stuttgart, 14.12.2018.Suche in Google Scholar
[3] Liebherr (2020): https://www.liebherr.com/de/deu/produkte/baumaschinen/turmdreh-krane/obendreherkrane/high-top-ec-h. Last access: 28.07.2020.Suche in Google Scholar
[4] Jekko (2020): Mini Crane SPX532 Technical Sheet. https://www.jekko-cranes.com/de/produkte/spx532/. Last access: 28.07.2020.Suche in Google Scholar
[5] Lin, X., Beetz, A., Schwieger, V. (2014): Evaluation of Control Quality using GNSS-RTK for an Outdoor Construction Machine Simulator. In: Proceedings on 4th International Conference on Machine Control and Guidance. 19th – 20th March 2014, Braunschweig. http://www.digibib.tu-bs.de/?docid=00056119. Last access: 03.02.2021.Suche in Google Scholar
[6] Eling, C., Wieland, M., Hess, C., Klingbeil, L., Kuhlmann, H. (2015): Development and evaluation of a UAV based mapping system for remote sensing and surveying applications. In: International Conference on Unmanned Aerial Vehicles in Geomatics, 30 Aug–02 Sep 2015, Toronto, Canada.Suche in Google Scholar
[7] Zhang, L.; (2016): Qualitätssteigerung von Low-Cost-GPS Zeitreihen für Monitoring Applikationen durch zeitlich-räumliche Korrelationsanalyse. (Dissertation). Bayerische Akademie der Wissenschaften, Verlag C. H. Beck, DGK, Reihe C, Nr. 776.Suche in Google Scholar
[8] Wanninger, L. (2011): Qualitätssicherung bei GNSS-Diensten. zfv – Zeitschrift für Geodäsie, Geoinformation und Landmanagement. Ausgabe 1/2011, 136. Jg. S. 8-17.Suche in Google Scholar
[9] Niemeier, W. (1985): Netzqualität und Optimierung. In: Pelzer, H. (Publisher, 1985) Geodätische Netze in Landes- und Ingenieurvermessung. Konrad Wittwer, Stuttgart. ISBN: 3-87919-140-9.Suche in Google Scholar
[10] Wakisaka, T., Furuya, N., Inoue, Y., Shiokawa, T. (2000): Automated construction system for high-rise reinforced concrete buildings. Automation in Construction, Issue 9 (2000), pp. 229–250.10.22260/ISARC1997/0014Suche in Google Scholar
[11] Schwieger, V., Menges, A, Zhang, L., Schwinn, T. (2019): Engineering Geodesy for Integrative Computational Design and Construction. ZfV, Heft 4/2019.Suche in Google Scholar
[12] Schwieger, V., Beetz, A., Wengert, M., Schweitzer, J. (2010): Echtzeit-Integration ingenieurgeodätischer Messsysteme in Bauregelkreise. 16. Internationaler Ingenieurvermessungskurs. München, 23.-27.02.2010.Suche in Google Scholar
[13] Bock, T. (2007): Construction robotics. Autonomous Robots 22 (3), pp. 201–209. DOI 10.1007/s10514-006-9008-5.Suche in Google Scholar
[14] Miyakawa, H., Ochiai, J., Oohata, K., Shiokawa, T. (2000): Application of automated building construction system for high-rise office building. In: 17th International Symposium on Automation and Robotics in Construction 2000. DOI: 10.22260/ISARC2000/0083.Suche in Google Scholar
[15] Ikeda, Y., Harada, T. (2006): Application of the Automated Building Construction System Using the Conventional Construction Method Together. In: 23rd International Symposium on Automation and Robotics in Construction (ISARC 2006), proceedings, October 3–5, 2006 Tokyo, Japan, pp. 722–727.10.22260/ISARC2006/0134Suche in Google Scholar
[16] Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R. (2006): Distributed Construction by Mobile Robots with Enhanced Building Blocks. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida – May 2006, pp. 2787–2794.10.1109/ROBOT.2006.1642123Suche in Google Scholar
[17] Magnenat, S., Philippsen, R., Mondada, F. (2012): Autonomous construction using scarce resources in unknown environment – Ingredients for an intelligent interaction with physical world. Autonomous Robots Issue 33, pp. 467–485. DOI 10.1007/s10514-012-9296-x.Suche in Google Scholar
[18] Durrant-Whyte, H., Bailey, T. (June 2006): Simultaneous Localization and Mapping: Part I. IEEE Robotics & Automation Magazine, Volume: 13, Issue: 2.10.1109/MRA.2006.1638022Suche in Google Scholar
[19] Yousif, K., Bab-Hadiashar, A., Hoseinnezhad, R. (2015): An Overview to Visual Odometry and Visual SLAM: Applications to Mobile Robotics. Intelligent Industrial Systems, volume 1, pp. 289–311.10.1007/s40903-015-0032-7Suche in Google Scholar
[20] Ardiny, H., Witwicki, S., Mondada, F. (2015): Autonomous Construction of Separated Artifacts by Mobile Robots Using SLAM and Stigmergy. In: Proceedings of the 2015 Conference on Autonomous and Robotic Construction of Infrastructure, Ames, Iowa.Suche in Google Scholar
[21] Vähä, P., Heikkilä, T., Kilpeläinen, P., Järviluoma, M., Gambao, E. (2013): Extending automation of building construction – Survey on potential sensor technologies and robotic applications. Automation in Construction, Issue 36 (2013), pp. 168–178.10.1016/j.autcon.2013.08.002Suche in Google Scholar
[22] Wasmeier, P. (2009) Grundlagen der Deformationsbestimmung mit Messdaten bildgebender Tachymeter. Dissertation Technische Universität München. Deutsche Geodätische Kommission, München, Reihe C, Heft Nr. 638.Suche in Google Scholar
[23] Lerke, O., Schwieger, V., (2015): Evaluierung der Regelgüte für tachymetrisch gesteuerte Fahrzeuge. ZfV, Heft 4/2015.Suche in Google Scholar
[24] Ehrhart, M.; Lienhart, W. (2017): Object tracking with robotic total stations: Current technologies and improvements based on image data. Journal of Applied Geodesy. Volume 11, Issue 3. 10.1515/jag-2016-0043.Suche in Google Scholar
[25] Heikkilä, R., Jaakkola, M. (2003): Automatic Control of Road Construction Machinery – Feasibility and Requirements. In: 20th International Symposium on Automation and Robotics in Construction, Eindhoven, Netherlands.10.22260/ISARC2003/0015Suche in Google Scholar
[26] Kirschner, H., Stempfhuber, W. (2008): The Kinematic Potential of Modern Tracking Total Stations – A State of the Art Report on the Leica TPS1200+, In: Proceeding of the 1St Internation Conference on Machine Control and Guidance, June 24–26, 2008, ETH Zurich, Switzerland.Suche in Google Scholar
[27] Thalmann, T., Neuner, H. (2018): Untersuchung des Network Time Protocols fur die Synchronisation von Multi-Sensor-Systemen. AVN 125 (2018) 6.Suche in Google Scholar
[28] Thalmann, T., Neuner, H. (2021): Temporal calibration and synchronization of robotic total stations for kinematic multi-sensor-systems. Journal of Applied Geodesy; 15(1): 13–30. Ahead of print.10.1515/jag-2019-0070Suche in Google Scholar
[29] Gojcic, Z.; Kalenjuk, S.; Lienhart, W. (2017): Synchronization routine for real-time synchronization of robotic total stations, In: INGEO 2017 7th International Conference on Engineering Surveying, Lisbon, Portugal, p. 183–191.Suche in Google Scholar
[30] Leica Geosystems (2015): White Paper ATR plus. https://globalsurvey.co.nz/wp-content/uploads/2014/10/ATRplus_WP.pdf. Last access: 22.01.2021.Suche in Google Scholar
[31] Trimble (2020): Datasheet Trimble S7 Total Station. https://geospatial.trimble.com/si-tes/geospatial.trim-ble.com/files/2019-06/022516154G_TrimbleS7_DS_USL_0619_LRsec.pdf. Last access: 15.10.2020.Suche in Google Scholar
[32] Sun, R., Cheng, Q., Wang, J. (2020): Precise vehicle dynamic heading and pitch angle estimation using time-differenced measurements from single GNSS antenna. GPS Solutions 24, 84. https://doi.org/10.1007/s10291-020-01000-2.10.1007/s10291-020-01000-2Suche in Google Scholar
[33] XSENS (2019): Specification sheet MTi 100-series IMU. https://www.xsens.com/products/mti-100-series. Last access: 02.07.2020.Suche in Google Scholar
[34] Schwieger, V., Zhang, L. (2019): Qualität in der Ingenieurgeodäsie – Begriff und Modellierung. In: Qualitätssicherung geodätischer Mess- und Auswerteverfahren 2019. 180. DVW-Seminar, 27.-28. June, Stuttgart. ISBN: 978-3-95786-218-1.Suche in Google Scholar
[35] Shanks, D. (2019): Optical tip of the month – FineLock for Trimble S Series instruments. https://geospatial.trimble.com/blog/optical-tip-month-finelock-trimble-s-series-instruments?utm_content=123310621&utm_medium=social&utm_source=linkedin&hss_channel=lcp-514781. Last access: 10.02.2021.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review
- Analysis of a kinematic real-time robotic total station network for robot control
- Research Articles
- Deformation analysis of a reference wall towards the uncertainty investigation of terrestrial laser scanners
- Investigating GNSS multipath effects induced by co-located Radar Corner Reflectors
- Temperature and humidity effects on CG-6 gravity observations
- Kriging-based prediction of the Earth’s pole coordinates
- Adjustment models for multivariate geodetic time series with vector-autoregressive errors
- Comparison of polar ionospheric behavior at Arctic and Antarctic regions for improved satellite-based positioning
Artikel in diesem Heft
- Frontmatter
- Review
- Analysis of a kinematic real-time robotic total station network for robot control
- Research Articles
- Deformation analysis of a reference wall towards the uncertainty investigation of terrestrial laser scanners
- Investigating GNSS multipath effects induced by co-located Radar Corner Reflectors
- Temperature and humidity effects on CG-6 gravity observations
- Kriging-based prediction of the Earth’s pole coordinates
- Adjustment models for multivariate geodetic time series with vector-autoregressive errors
- Comparison of polar ionospheric behavior at Arctic and Antarctic regions for improved satellite-based positioning