Startseite Deformation analysis of a reference wall towards the uncertainty investigation of terrestrial laser scanners
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Deformation analysis of a reference wall towards the uncertainty investigation of terrestrial laser scanners

  • Berit Schmitz ORCID logo EMAIL logo , Heiner Kuhlmann und Christoph Holst
Veröffentlicht/Copyright: 25. März 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The perfect knowledge about the scanned object’s geometry is essential for the empirical analysis of the stochastic properties of terrestrial laser scanners (TLSs). The Bonn reference wall is intended to be used as a reference for TLS quality investigations. Therefore, it is necessary to know the geometry of the wall at each time of scanning to avoid the misinterpretation of possible movements as systematic effects in the scanner. For this reason, we investigate the stability of the Bonn reference wall in this study. This includes the definition of a geodetic datum, the quantification of displacements, and the establishment of a suited deformation model. Since we discover a movement of about 1 mm within one day and up to 7 mm over the year, it is necessary to establish a cause-response deformation model to correct the wall movements in the scans. This study proposes two dynamic deformation models to compensate for the movements of the wall within one day and within a year. Our results show that it is better to measure the initial geometry of the wall each day since 89 % of the relative movements can be reduced to a maximum of 0.25 mm with a standard deviation of 0.16 mm (0.23 mm without modeling). If the shape is not initially known each day, the standard deviation of the displacements can be reduced from 1.10 mm to 0.61 mm, but the largest residuals still amount up to 2.5 mm, which is not sufficient for stochastic TLS investigations.

References

[1] Alba, M., Fregonese, L., Prandi, F., Scaioni, M., and Valgoi, P. Structural monitoring of a large dam by terrestrial laser scanning. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36, part 5 (2006), 1–6.Suche in Google Scholar

[2] Barrell, H., and Sears, J. Junr. The refraction and dispersion of air and dispersion of air for the visible spectrum. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 238, 786 (1939), 1–64.10.1098/rsta.1939.0004Suche in Google Scholar

[3] Barzaghi, R., Cazzaniga, N. E., De Gaetani, C. I., Pinto, L., and Tornatore, V. Estimating and comparing dam deformation using classical and GNSS techniques. Sensors 18, 3 (2018), 756.10.3390/s18030756Suche in Google Scholar PubMed PubMed Central

[4] Chmelina, K., Jansa, J., Hesina, G., and Traxler, C. A 3-d laser scanning system and scan data processing method for the monitoring of tunnel deformations. Journal of Applied Geodesy 6, 3-4 (2012), 177–185.10.1515/jag-2012-0013Suche in Google Scholar

[5] Cosser, E., Roberts, G. W., Meng, X., and Dodson, A. H. Measuring the dynamic deformation of bridges using a total station. In Proceeding of the 11th FIG Symposium on Deformation Measurements, Santorini, Greece (2003), pp. 25–28.Suche in Google Scholar

[6] Dünisch, M., Kuhlmann, H., and Möhlenbrink, W. Baubegleitendes Festpunktfeld bei der Einrichtung und Kontrolle der Festen Fahrbahn. Allgemeine Vermessungs-Nachrichten (AVN) 10/2000 (2000), 353–359. (In German).Suche in Google Scholar

[7] Förstner, W., and Wrobel, B. Photogrammetric Computer Vision – Statistics, Geometry, Orientation and Reconstruction. Springer International Publishing: Cham, Switzerland, 2016.10.1007/978-3-319-11550-4Suche in Google Scholar

[8] Heinz, E., Holst, C., Kuhlmann, H., and Klingbeil, L. Design and evaluation of a permanently installed plane-based calibration field for mobile laser scanning systems. Remote Sensing 12, 3 (2020), 555.10.3390/rs12030555Suche in Google Scholar

[9] Heinz, E., Klingbeil, L., and Kuhlmann, H. Aufbau einer Einrichtung zur Kalibrierung und Evaluierung von Mobile Mapping Systemen. T. Wunderlich (Hrsg.): Ingenieurvermessung 2020, Beiträge zum 19. Internationalen Ingenieurvermessungskurs, München, Deutschland, Wichmann Verlag, Berlin, Offenbach, pp. 113–125.Suche in Google Scholar

[10] Heunecke, O., Kuhlmann, H., Welsch, W., Eichhorn, A., and Neuner, H. Handbuch Ingenieurgeodäsie: Auswertung geodätischer Überwachungsmessungen. 2. Auflage. Wichmann, Heidelberg, 2013.Suche in Google Scholar

[11] Heunecke, O., and Pelzer, H. A new terminology for deformation analysis models based on system theory. In IAG Symposium on Geodesy for Geotechnical and Structural Engineering in Eisenstadt (1998), pp. 20–22.Suche in Google Scholar

[12] Heunecke, O., and Welsch, W. Terminology and classification of deformation models in engineering surveys. Journal of Geospatial Engineering, 2, 1 (2000), 35–44.Suche in Google Scholar

[13] Holst, C., Artz, T., and Kuhlmann, H. Biased and unbiased estimates based on laser scans of surfaces with unknown deformations. Journal of Applied Geodesy 8, 3 (2014), 169–184.10.1515/jag-2014-0006Suche in Google Scholar

[14] Holst, C., and Kuhlmann, H. Challenges and present fields of action at laser scanner based deformation analyses. Journal of Applied Geodesy 10, 1 (2016), 17–25.10.1515/jag-2015-0025Suche in Google Scholar

[15] Jurek, T., Kuhlmann, H., and Holst, C. Impact of spatial correlations on the surface estimation based on terrestrial laser scanning. Journal of Applied Geodesy 11, 3 (2017), 143–155.10.1515/jag-2017-0006Suche in Google Scholar

[16] Kahmen, H. Vermessungskunde. de Gruyter, Berlin (1997). 19. überarb. Aufl., (in German).Suche in Google Scholar

[17] Kauker, S., Holst, C., Schwieger, V., Kuhlmann, H., and Schön, S. Spatio-temporal correlations of terrestrial laser scanning. Allgemeine Vermessungs Nachrichten (AVN) 6/2016, pp 170–182 (2016). Wichmann Verlag, Berlin.Suche in Google Scholar

[18] Kauker, S., and Schwieger, V. A synthetic covariance matrix for monitoring by terrestrial laser scanning. Journal of Applied Geodesy 11, 2 (2017), 77–87.10.1515/jag-2016-0026Suche in Google Scholar

[19] Kerekes, G., and Schwieger, V. Elementary error model applied to terrestrial laser scanning measurements: study case arch dam kops. Mathematics 8, 4 (2020), 593.10.3390/math8040593Suche in Google Scholar

[20] Kermarrec, G., Paffenholz, J.-A., and Alkhatib, H. How significant are differences obtained by neglecting correlations when testing for deformation: A real case study using bootstrapping with terrestrial laser scanner observations approximated by b-spline surfaces. Sensors 19, 17 (2019), 3640.10.3390/s19173640Suche in Google Scholar PubMed PubMed Central

[21] Kuhlmann, H., and Glaser, A. Investigation of new measurement techniques for bridge monitoring. In 2nd Symposium on Geodesy for Geotechnical and Structural Engineering, Berlin, Germany (2002), pp. 123–132.Suche in Google Scholar

[22] Leica Geosystems. Leica ScanStation P50 Because every detail matters, 2017. Data sheet, Heerbrugg, Switzerland, available online: leica-geosystems.com, last accessed 2020/01/10.Suche in Google Scholar

[23] Leica Geosystems. Leica Nova TS60, 2020. Data sheet, Heerbrugg, Switzerland, available online: leica-geosystems.com, last accessed 2020/03/05.Suche in Google Scholar

[24] Lienhart, W., Ehrhart, M., and Grick, M. High frequent total station measurements for the monitoring of bridge vibrations. Journal of Applied Geodesy 11, 1 (2017), 1–8.10.1515/jag-2016-0028Suche in Google Scholar

[25] Medić, T. Efficient calibration strategies for panoramic terrestrial laser scanners. PhD thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2021.Suche in Google Scholar

[26] Moritz, H. Advanced least-squares methods, 1972. Report no. 175, Department of Geodetic Science, Ohio State University, USA.Suche in Google Scholar

[27] Pelzer, H. Zur Analyse geodätischer Deformationsmessungen, 1971. Deutsche Geodätische Kommission, Reihe C, No. 164, München.Suche in Google Scholar

[28] Scaioni, M., Barazzetti, L., Giussani, A., Previtali, M., Roncoroni, F., and Alba, M. I. Photogrammetric techniques for monitoring tunnel deformation. Earth Science Informatics 7, 2 (2014), 83–95.10.1007/s12145-014-0152-8Suche in Google Scholar

[29] Scaioni, M., Marsella, M., Crosetto, M., Tornatore, V., and Wang, J. Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors 18, 11 (2018), 3682.10.3390/s18113682Suche in Google Scholar PubMed PubMed Central

[30] Schmitz, B., Holst, C., Medic, T., Lichti, D. D., and Kuhlmann, H. How to efficiently determine the range precision of 3D terrestrial laser scanners. Sensors 19, 6 (2019), 1466.10.3390/s19061466Suche in Google Scholar PubMed PubMed Central

[31] Schmitz, B., Kuhlmann, H., and Holst, C. Investigating the resolution capability of terrestrial laser scanners and its impact on the effective number of measurements. ISPRS Journal of Photogrammetry and Remote Sensing 159 (2020), 41–52.10.1016/j.isprsjprs.2019.11.002Suche in Google Scholar

[32] Schwintzer, P. Zur Bestimmung der signifikanten Parameter in Approximationsfunktionen. Beiträge aus dem Institut für Geodäsie der UniBW München 10 (1984). Caspary and Schödelbauer and Welsch, pp. 71–91.Suche in Google Scholar

[33] Strauss, A., Bien, J., Neuner, H., Harmening, C., Seywald, C., Österreicher, M., Voit, K., Pistone, E., Spyridis, P., and Bergmeister, K. Sensing and monitoring in tunnels testing and monitoring methods for the assessment of tunnels. Structural Concrete (2020), 1–21.10.1002/suco.201900444Suche in Google Scholar

[34] Teodorescu, I., Țăpuși, D., Erbașu, R., Bastidas-Arteaga, E., and Aoues, Y. Influence of the climatic changes on wood structures behaviour. Energy Procedia, Elsevier, 112 (2017), 450–459.10.1016/j.egypro.2017.03.1112Suche in Google Scholar

[35] Vosselman, G., and Maas, H.-G. Airborne and Terrestrial Laser Scanning. Whittles Publishing, Dunbeath, Scotland (UK), 2010.Suche in Google Scholar

[36] Welsch, W., and Heunecke, O. Models and terminology for the analysis of geodetic monitoring observations, official report of the ad-hoc committee of fig working group 6.1. In The 10th FIG International Symposium on Deformation Measurements, 19–22 March 2001, Orange, California, USA (2001), 390–412.Suche in Google Scholar

[37] Wujanz, D., Burger, M., Mettenleiter, M., and Neitzel, F. An intensity-based stochastic model for terrestrial laser scanners. ISPRS Journal of Photogrammetry and Remote Sensing 125 (2017), 146–155.10.1016/j.isprsjprs.2016.12.006Suche in Google Scholar

[38] Yu, J., Zhu, P., Xu, B., and Meng, X. Experimental assessment of high sampling-rate robotic total station for monitoring bridge dynamic responses. Measurement 104 (2017), 60–69.10.1016/j.measurement.2017.03.014Suche in Google Scholar

[39] Zhao, X., Kermarrec, G., Kargoll, B., Alkhatib, H., and Neumann, I. Influence of the simplified stochastic model of tls measurements on geometry-based deformation analysis. Journal of Applied Geodesy 13, 3 (2019), 199–214.10.1515/jag-2019-0002Suche in Google Scholar

[40] Zoller + Fröhlich. Reaching new levels Z+F Imager 5016 User Manual V 1.8., 2018. User manual, Wangen im Allgäu, Germany.Suche in Google Scholar

Received: 2020-06-16
Accepted: 2021-03-09
Published Online: 2021-03-25
Published in Print: 2021-07-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 17.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jag-2020-0025/pdf
Button zum nach oben scrollen