Startseite Some improvements on the convergence in measure for sequence of semicopula-based universal integrals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some improvements on the convergence in measure for sequence of semicopula-based universal integrals

  • Do Huy Hoang , Truong Thi Nhan , Dao Van Duong und Tran Nhat Luan ORCID logo EMAIL logo
Veröffentlicht/Copyright: 11. Juli 2025
Journal of Applied Analysis
Aus der Zeitschrift Journal of Applied Analysis

Abstract

In this paper, we study an improvement on convergence in the measure theorem of a sequence of seminormed fuzzy integrals which has been proposed by Xuecheng. Furthermore, some other forms of convergence in measure are also presented.

MSC 2020: 26E50; 28B20; 28E05; 28E10; 94D05

References

[1] J. Borzová, L. Halčinová and O. Hutník, The smallest semicopula-based universal integrals: remarks and improvements, Fuzzy Sets and Systems 393 (2020), 29–52. 10.1016/j.fss.2019.05.010Suche in Google Scholar

[2] J. Borzová-Molnárová, L. Halčinová and O. Hutník, The smallest semicopula-based universal integrals I: Properties and characterizations, Fuzzy Sets and Systems 271 (2015), 1–17. 10.1016/j.fss.2014.09.023Suche in Google Scholar

[3] J. Borzová-Molnárová, L. Halčinová and O. Hutník, The smallest semicopula-based universal integrals II: Convergence theorems, Fuzzy Sets and Systems 271 (2015), 18–30. 10.1016/j.fss.2014.09.024Suche in Google Scholar

[4] D. H. Hoang, P. T. Son, H. Q. Duc, D. Van Duong and T. N. Luan, On a convergence in measure theorem for the seminormed and semiconormed fuzzy integrals, Fuzzy Sets and Systems 457 (2023), 156–168. 10.1016/j.fss.2022.08.008Suche in Google Scholar

[5] D. H. Hoang, P. T. Son, T. T. Nhan, H. Q. Duc and D. V. Duong, On almost uniform convergence theorems for the smallest semicopula-based universal integral, Fuzzy Sets and Systems 467 (2023), Paper No. 108592. 10.1016/j.fss.2023.108592Suche in Google Scholar

[6] E. P. Klement, R. Mesiar and E. Pap, A universal integral as common frame for Choquet and Sugeno integral, IEEE Trans. Fuzzy Syst. 18 (2009), 178–187. 10.1109/TFUZZ.2009.2039367Suche in Google Scholar

[7] J. Li, On null-continuity of monotone measures, Mathematics 205 (2020), 1–13. 10.3390/math8020205Suche in Google Scholar

[8] J. Li, R. Mesiar, E. Pap and E. P. Klement, Convergence theorems for monotone measures, Fuzzy Sets and Systems 281 (2015), 103–127. 10.1016/j.fss.2015.05.017Suche in Google Scholar

[9] X. C. Liu, Further discussion on convergence theorems for seminormed fuzzy integrals and semiconormed fuzzy integrals, Fuzzy Sets and Systems 55 (1993), no. 2, 219–226. 10.1016/0165-0114(93)90134-4Suche in Google Scholar

[10] R. Mesiar and A. Stupƈanová, 12th international conference on fuzzy set theory and its applications, Fuzzy Sets and Systems 261 (2015), 112–123. 10.1016/j.fss.2014.07.012Suche in Google Scholar

[11] F. Suárez García and P. Gil Álvarez, Two families of fuzzy integrals, Fuzzy Sets and Systems 18 (1986), no. 1, 67–81. 10.1016/0165-0114(86)90028-XSuche in Google Scholar

[12] Z. Wang and G. J. Klir, Generalized Measure Theory, IFSR Int. Ser. Syst. Sci. Eng. 25, Springer, New York, 2009. 10.1007/978-0-387-76852-6Suche in Google Scholar

Received: 2025-03-28
Revised: 2025-06-16
Accepted: 2025-07-02
Published Online: 2025-07-11

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2025-0042/html
Button zum nach oben scrollen