Startseite Equilibria for abstract economies with convex or acyclic valued correspondences
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Equilibria for abstract economies with convex or acyclic valued correspondences

  • Donal O’Regan EMAIL logo
Veröffentlicht/Copyright: 25. Juni 2025
Journal of Applied Analysis
Aus der Zeitschrift Journal of Applied Analysis

Abstract

Using collectively fixed point theorems, we establish new equilibrium results for abstract economies where the constraint and preference correspondences are Kakutani or acyclic maps. First we present a variety of new collectively fixed point theorems based on a generalized Schauder type theorem. This then enables us to establish new equilibrium results for abstract economies where, in particular, we obtain new general results for acyclic valued constraint and preference correspondences.

MSC 2020: 47H10; 54H25

References

[1] R. P. Agarwal and D. O’Regan, Fixed point theory for maps with lower semicontinuous selections and equilibrium theory for abstract economies, J. Nonlinear Convex Anal. 2 (2001), 31–46. Suche in Google Scholar

[2] C. D. Aliprantis and K. C. Border, Infinite-Dimensional Analysis, Stud. Econom. Theory 4, Springer, Berlin, 1994. 10.1007/978-3-662-03004-2Suche in Google Scholar

[3] H. Ben-El-Mechaiekh and P. Deguire, Approachability and fixed points for nonconvex set-valued maps, J. Math. Anal. Appl. 170 (1992), no. 2, 477–500. 10.1016/0022-247X(92)90032-9Suche in Google Scholar

[4] X. P. Ding, W. K. Kim and K.-K. Tan, A selection theorem and its applications, Bull. Aust. Math. Soc. 46 (1992), no. 2, 205–212. 10.1017/S0004972700011849Suche in Google Scholar

[5] L. Górniewicz, Topological Fixed Point Theory of Multivalued Mappings, Math. Appl. 495, Kluwer Academic, Dordrecht, 1991. Suche in Google Scholar

[6] W. He and N. C. Yannelis, Equilibria with discontinuous preferences: new fixed point theorems, J. Math. Anal. Appl. 450 (2017), no. 2, 1421–1433. 10.1016/j.jmaa.2017.01.089Suche in Google Scholar

[7] M. A. Khan, R. P. McLean and M. Uyanik, On equilibria in constrained generalized games with the weak continuous inclusion property, J. Math. Anal. Appl. 537 (2024), no. 1, Article ID 128258. 10.1016/j.jmaa.2024.128258Suche in Google Scholar

[8] E. Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361–382. 10.2307/1969615Suche in Google Scholar

[9] D. O’Regan, Fixed point theory on extension-type spaces and essential maps on topological spaces, Fixed Point Theory Appl. 2004 (2004), no. 1, 13–20. 10.1155/S1687182004311046Suche in Google Scholar

[10] D. O’Regan, Deterministic and random fixed points for maps on extension type spaces, Appl. Anal. 97 (2018), no. 11, 1960–1966. 10.1080/00036811.2017.1344228Suche in Google Scholar

[11] D. O’Regan, Existence of equilibrium points for abstract economies in the topological vector space setting, Appl. Anal. Optim. 7 (2023), no. 2, 171–178. Suche in Google Scholar

[12] D. O’Regan, Maximal, equilibrium and coincidence points for majorized type correspondences, J. Math. Comput. Sci. 32 (2024), 64–73. 10.22436/jmcs.032.01.06Suche in Google Scholar

[13] X. Wu, A new fixed point theorem and its applications, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1779–1783. 10.1090/S0002-9939-97-03903-8Suche in Google Scholar

[14] G. X.-Z. Yuan, The study of minimax inequalities and applications to economies and variational inequalities, Mem. Amer. Math. Soc. 132 (1998), no. 625, 1–140. 10.1090/memo/0625Suche in Google Scholar

[15] G. X.-Z. Yuan and E. Tarafdar, Maximal elements and equilibria of generalized games for 𝒰-majorized and condensing correspondences, Int. J. Math. Math. Sci. 22 (1999), no. 1, 179–189. 10.1155/S0161171299221795Suche in Google Scholar

Received: 2025-02-26
Revised: 2025-06-03
Accepted: 2025-06-05
Published Online: 2025-06-25

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/jaa-2025-0026/html
Button zum nach oben scrollen