Abstract
A Euclidean submanifold is said to be of Chen finite type if its coordinate functions are a finite sum of eigenfunctions of its Laplacian Δ.
In this paper, we classify two types of affine homothetical surfaces of finite type in isotropic 3-space
Acknowledgements
The author is grateful to the referees for their valuable suggestions.
References
[1]
L. J. Alías, A. Ferrández and P. Lucas,
Surfaces in the 3-dimensional Lorentz–Minkowski space satisfying
[2] H. Al-Zoubi, B. Senoussi, M. Al-Sabbagh and M. Ozdemir, The Chen type of Hasimoto surfaces in the Euclidean 3-space, AIMS Math. 8 (2023), no. 7, 16062–16072. 10.3934/math.2023819Suche in Google Scholar
[3] M. E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom. 107 (2016), no. 3, 603–615. 10.1007/s00022-015-0292-0Suche in Google Scholar
[4] M. E. Aydin, A. Erdur and M. Ergut, Affine factorable surfaces in isotropic spaces, TWMS J. Pure Appl. Math. 11 (2020), no. 1, 72–88. Suche in Google Scholar
[5]
M. Bekkar and B. Senoussi,
Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying
[6]
M. Bekkar and B. Senoussi,
Translation surfaces in the 3-dimensional space satisfying
[7]
B. Bukcu, D. W. Yoon and M. K. Karacan,
Translation surfaces in the 3-dimensional simply isotropic space
[8] B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Ser. Pure Math. 1, World Scientific, Singapore, 1984. 10.1142/0065Suche in Google Scholar
[9] L. C. B. da Silva, Differential geometry of invariant surfaces in simply isotropic and pseudo-isotropic spaces, Math. J. Okayama Univ. 63 (2021), 15–52. Suche in Google Scholar
[10] F. Dillen, J. Pas and L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J. 13 (1990), no. 1, 10–21. 10.2996/kmj/1138039155Suche in Google Scholar
[11] Ž. Milin Šipuš, Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hungar. 68 (2014), no. 2, 160–175. 10.1007/s10998-014-0027-2Suche in Google Scholar
[12] H. Sachs, Isotrope Geometrie des Raumes, Vieweg, Braunschweig, 1990. 10.1007/978-3-322-83785-1Suche in Google Scholar
[13] B. Senoussi, Helicoidal surfaces of finite type in the 3-dimensional Heisenberg group, J. Interdiscip. Math. 25 (2022), 1143–1152. 10.1080/09720502.2021.1950287Suche in Google Scholar
[14]
B. Senoussi and H. Al-Zoubi,
Translation surfaces of finite type in
[15]
B. Senoussi, K. Beddani and A. Bennour,
THA-surfaces of finite type in the Galilean space
[16] B. Senoussi and M. Bekkar, Translation surfaces of the third fundamental form in Lorentz–Minkowski space, Iran. J. Math. Sci. Inform. 17 (2022), no. 1, 165–176. 10.52547/ijmsi.17.1.165Suche in Google Scholar
[17]
B. Senoussi, A. Bennour and K. Beddani,
THA-surfaces in the Galilean space
[18] B. Senoussi, A. Bennour and K. Beddani, THA-surfaces in 3-dimensional Euclidean space, Asia Pac. J. Math 8 (2021), 1–15. Suche in Google Scholar
[19] K. Strubecker, Differentialgeometrie des isotropen Raumes. III. Flächentheorie, Math. Z. 48 (1942), 369–427. 10.1007/BF01180022Suche in Google Scholar
[20] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380–385. 10.2969/jmsj/01840380Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston