Startseite Predicting the Non-Linear Conveying Behavior in Single-Screw Extrusion: A Comparison of Various Data-Based Modeling Approaches used with CFD Simulations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Predicting the Non-Linear Conveying Behavior in Single-Screw Extrusion: A Comparison of Various Data-Based Modeling Approaches used with CFD Simulations

  • W. Roland , C. Marschik , M. Kommenda , A. Haghofer , S. Dorl und S. Winkler
Veröffentlicht/Copyright: 16. November 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The traditional approach to modeling the polymer melt flow in single-screw extruders is based on analytical and numerical analyses. Due to increasing computational power, data-driven modeling has grown significantly in popularity in recent years. In this study, we compared and evaluated databased modeling approaches (i. e., gradient-boosted trees, artificial neural networks, and symbolic regression models based on genetic programming) in terms of their ability to predict – within a hybrid modeling framework – the three-dimensional non-linear throughput-pressure relationship of metering channels in single-screw extruders. By applying the theory of similarity to the governing flow equations, we identified the characteristic dimensionless influencing parameters, which we then varied to create a large dataset covering a wide range of possible applications. For each single design point we conducted numerical simulations and obtained the dimensionless flow rate. The large dataset was divided into three independent sets for training, interpolation, and extrapolation, the first being used to generate and the remaining two to evaluate the models. Further, we added two features derived from expert knowledge to the models and analyzed their influence on predictive power. In addition to prediction accuracy and interpolation and extrapolation capabilities, we evaluated model complexity, interpretability, and time required to learn the models. This study provides a rigorous analysis of various data-based modeling approaches applied to simulation data in extrusion.


Wolfgang Roland, Institute of Polymer Extrusion and Compounding, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria

Acknowledgements

This research was funded by the Austrian Science Fund (FWF), grant number: I 4872-N. The authors additionally acknowledge support from the Christian Doppler Research Association and the Federal Ministry for Digital and Economic Affairs under the aegis of the Josef Ressel Center for Symbolic Regression.

The computational results presented were achieved in part by using the Vienna Scientific Cluster (VSC).

References

Affenzeller, M., Wagner, S., Winkler, S. and Beham, A.: Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications, CRC Press, Boca Raton (2009), DOI:10.1201/978142001132610.1201/9781420011326Suche in Google Scholar

Aigner, M., “Computational and Experimental Modelling of Transport Phenomena in Single Screw Plasticating Units under Consideration of the Melt Quality", PhD Thesis, JKU Linz, Linz, Austria (2014)Suche in Google Scholar

Bird, R. B., Stewart, W. E. and Lightfoot, E. N.: Transport Phenomena, 2nd Edition, John Wiley & Sons, New York (2002)Suche in Google Scholar

Bishop, C. M.: Neural Networks for Pattern Recognition, Oxford University Press, New York (1995), DOI:10.1201/9781420050646.ptb610.1201/9781420050646.ptb6Suche in Google Scholar

Booy, M. L., “The Influence of Non-Newtonian Flow on Effective Viscosity and Channel Efficiency in Screw Pumps", Polym. Eng. Sci., 21, 93–99 (1981), DOI:10.1002/pen.76021020710.1002/pen.760210207Suche in Google Scholar

Bre, F., Gimenez, J. and Fachinotti, V., “Prediction of Wind Pressure Coefficients on Building Surfaces Using Artificial Neural Networks", Energy Build., 158, 1429–441 (2018), DOI:10.1016/j.enbuild.2017.11.04510.1016/j.enbuild.2017.11.045Suche in Google Scholar

Breiman, L., “Random Forests", Machine Learning, 45, 5–32 (2001), DOI:10.1023/A:101093340432410.1023/A:1010933404324Suche in Google Scholar

Chen, T., Guestrin, C., “XGBoost: A Scalable Tree Boosting System", in Proceedings of the 22nd acm sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, p. 785–794 (2016), DOI:10.1145/2939672.293978510.1145/2939672.2939785Suche in Google Scholar

Chollet, F., “Keras: The Python Deep Learning Library" (2015), https://keras. ioSuche in Google Scholar

Durst, F.: Fluid Mechanics: An Introduction to the Theory of Fluid Flows, Springer, Berlin (2008), DOI:10.1007/978-3-540-71343-210.1007/978-3-540-71343-2Suche in Google Scholar

Fenner, R. T., “Developments in the Analysis of Steady Screw Extrusion of Polymers", Polymer, 18, 617–635 (1977), DOI:10.1016/0032-3861(77)90066-010.1016/0032-3861(77)90066-0Suche in Google Scholar

Freund, Y., Schapire, R. E., “A Short Introduction to Boosting", Journal of the Japanese Society for Artificial Intelligence, 14, 771–780 (1999)Suche in Google Scholar

Friedman, J. H., “Greedy Function Approximation: A Gradient Boosting Machine", Annals of Statistics, 29, 1189–1232 (2001), DOI:10.1214/aos/101320345110.1214/aos/1013203451Suche in Google Scholar

Ghoreishy, M. H. R., Razavi-Nouri, M., “Finite Element Analysis of Thermoplastic Melts Flow through the Metering and Die Regions of Single Screw Extruders", J. Appl. Polym. Sci., 74, 676–689 (1999), DOI:10.1002/(SICI)1097-4628(19991017)74 : 3<676::AID-APP22>3.0.CO;2-%2310.1002/(SICI)1097-4628(19991017)74 : 3<676::AID-APP22>3.0.CO;2-%23Suche in Google Scholar

Ghoreishy, M. H. R., Razavi-Nouri, M. and Naderi, G., “Finite Element Analysis of a Thermoplastic Elastomer Melt Flow in the Metering Region of a Single Screw Extruder", Comp. Mat. Sci., 34, 389–396 (2005), DOI:10.1016/j.commatsci.2005.01.01110.1016/j.commatsci.2005.01.011Suche in Google Scholar

Griffith, R. M., “Fully Developed Flow in Screw Extruders. Theoretical and Experimental Study", Ind. Eng. Chem., 1, 180–187 (1962), DOI:10.1021/i160003a00410.1021/i160003a004Suche in Google Scholar

Hawkins, D. M., “The Problem of Overfitting", J. Chem. Inf. Comput. Sci., 44, 1–2 (2004), DOI:10.1021/ci034247210.1021/ci0342472Suche in Google Scholar PubMed

Ioffe, S., Szegedy, C., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", in 32nd International Conference on Machine Learning, Lille (2015)Suche in Google Scholar

Juszczak, P., Tax, D. and Duin, R. P., “Feature Scaling in Support Vector Data Description", in Proceeding of Asci, p. 95–102 (2002)Suche in Google Scholar

Kadyirov, A., Gataullin, R. and Karaeva, J., “Numerical Simulation of Polymer Solutions in a Single-Screw Extruder", Appl. Sci., 9, 5423 (2019), DOI:10.3390/app924542310.3390/app9245423Suche in Google Scholar

Kim, S. J., Won, T. H., “A Simple Approach to Determining Three-Dimensional Screw Characteristics in the Metering Zone of Extrusion Processes Using a Total Shape Factor", Polym. Eng. Sci., 35, 274–283 (1995), DOI:10.1002/pen.76035030810.1002/pen.760350308Suche in Google Scholar

Kommenda, M., Kronberger, G., Winkler, S., Affenzeller, M. and Wagner, S., “Effects of Constant Optimization by Nonlinear Least Squares Minimization in Symbolic Regression", Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, Amsterdam, p. 1121–1128 (2013), DOI:10.1145/2464576.248269110.1145/2464576.2482691Suche in Google Scholar

Kommenda, M., Burlacu, B., Kronberger, G. and Affenzeller, M., “Parameter Identification for Symbolic Regression Using Nonlinear Least Squares", Genetic Programming and Evolvable Machines, 21, 471–501, (2020), DOI:10.1007/s10710-019-09371-310.1007/s10710-019-09371-3Suche in Google Scholar

Koza, J. R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge (1992)Suche in Google Scholar

Luger, H. J., Roland W., Löw-Baselli, B. and Miethlinger, J., “A Network-Analysis-Based Comparative Study of the Throughput Behavior in Double Wave Screw Geometries", SPE ANTEC Tech. Papers, (2018)Suche in Google Scholar

Manas-Zloczower, I.: Mixing and Compounding of Polymers – Theory and Practice, Hanser, Munich (2006)Suche in Google Scholar

Marschik, C., Roland, W., Löw-Baselli, B. and Miethlinger, J., “Modeling Three-Dimensional Non-Newtonian Flows in Single-Screw Extruders", SPE ANTEC Tech. Papers, 1125–1130 (2017a), DOI:10.1016/j.jnnfm.2017.08.00710.1016/j.jnnfm.2017.08.007Suche in Google Scholar

Marschik, C., Roland, W., Löw-Baselli, B. and Miethlinger, J., “A Heuristic Method for Modeling Three-Dimensional Non-Newtonian Flows of Polymer Melts in Single-Screw Extruders", J. Non-Newtonian Fluid Mech., 248, 27–39 (2017b), DOI:10.1016/j.jnnfm.2017.08.00710.1016/j.jnnfm.2017.08.007Suche in Google Scholar

Marschik, C., Roland, W. and Miethlinger, J., “A Network-Theory-Based Comparative Study of Melt-Conveying Models in Single-Screw Extrusion: A. Isothermal Flow", Polymers, 10, 929 (2018), DOI:10.3390/polym1008092910.3390/polym10080929Suche in Google Scholar PubMed PubMed Central

Marschik, C., Roland, W., Dörner, M., Schaufler, S., Schöppner, V. and Steinbichler, G., “Application of Network Analysis to Flow Systems with Alternating Wave Channels: Part B. (Superimposed Drag-Pressure Flows in Extrusion)", Polymers, 12, 1900 (2020a), DOI:10.3390/polym1209190010.3390/polym12091900Suche in Google Scholar PubMed PubMed Central

Marschik, C., Roland, W., Löw-Baselli, B. and Steinbichler, G., “Application of Hybrid Modeling in Polymer Processing", SPE ANTEC Tech. Papers, 811–818 (2020b)Suche in Google Scholar

Montans, F. J., Chinesta, F., Gomez-Bombarelli, R. and Nathan-Kutz, J., “Data-Driven Modeling and Learning in Science and Engineering", C. R. Mec., 347, 845–855 (2019), DOI:10.1016/j.crme.2019.11.00910.1016/j.crme.2019.11.009Suche in Google Scholar

Mori, Y., Matsumoto. T. K., “Analytical Study of Plastics Extrusion", Rheol. Acta, 1, 240–242 (1958), DOI:10.1007/BF0196887410.1007/BF01968874Suche in Google Scholar

Narkis, M., Ram, A., “Extrusion Discharge Rate Equations for Non-Newtonian Fluids", Polym. Eng. Sci., 7, 161–167 (1967), DOI:10.1002/pen.76007030610.1002/pen.760070306Suche in Google Scholar

Ng, A. Y., “Feature Selection, L1 vs. L2 Regularization, and Rotational Invariance", Twenty-First International Conference on Machine Learning, Banff, Alberta (2004), DOI:10.1145/1015330.101543510.1145/1015330.1015435Suche in Google Scholar

Pachner, S., Löw-Baselli, B., Affenzeller, M. and Miethlinger, J., “A Generalized 2D Output Model of Polymer Melt Flow in Single-Screw Extrusion", Int. Polym. Proc., 32, 209–216 (2017), DOI:10.3139/217.332610.3139/217.3326Suche in Google Scholar

Potente, H., “Auslegung von Schmelzeextrudern für Kunststoffschmelzen mit Potenzverhalten", Kunststoffe, 71, 474–478 (1981)Suche in Google Scholar

Potente, H., “Approximationsgleichungen für Schmelzeextruder", Rheol. Acta, 22, 387–395 (1983), DOI:10.1007/BF0133376910.1007/BF01333769Suche in Google Scholar

Potente, H., Hanhart, W. and Schöppner, V., “Potential Applications for Computer-Aided Extruder Design", Int. Polym. Proc., 8, 335–344 (1993), DOI:10.3139/217.93033510.3139/217.930335Suche in Google Scholar

Rauwendaal, C., “Throughput-Pressure Relationship for Power Law Fluids in Single Screw Extruders", Polym. Eng. Sci., 26, 1240–1244 (1986), DOI:10.1002/pen.76026180310.1002/pen.760261803Suche in Google Scholar

Rauwendaal, C., “Finite Element Studies of Flow and Temperature Evolution in Single Screw Extruders", Plast. Rubber, Comp., 33, 390–396 (2013), DOI:10.1179/174328904X2488010.1179/174328904X24880Suche in Google Scholar

Rotem, Z., Shinnar, R., “Non-Newtonian Flow between Parallel Boundaries in Linear Movement", Chem. Eng. Sci., 15, 130–143 (1961), DOI:10.1016/0009-509(61)85006-910.1016/0009-509(61)85006-9Suche in Google Scholar

Roland, W., Kommenda, M., Marschik, C. and Miethlinger, J., “Extended Regression Models for Predicting the Pumping Capability and Viscous Dissipation of Two-Dimensional Flows in Single-Screw Extrusion", Polymers, 11, 334 (2019a), DOI:10.3390/polym1102033410.3390/polym11020334Suche in Google Scholar PubMed PubMed Central

Roland, W., Marschik, C., Krieger, M., Löw-Baselli, B. and Miethlinger, J., “Symbolic Regression Models for Predicting Viscous Dissipation of Three-Dimensional Non-Newtonian flows in Single-Screw Extruders", J. Non-Newtonian Fluid Mech., 268, 12–29 (2019b), DOI:10.1016/j.jnnfm.2019.04.00610.1016/j.jnnfm.2019.04.006Suche in Google Scholar

Roland, W., Marschik, C., Hammer, A. and Steinbichler, G., “Modeling the Non-Isothermal Conveying Characteristics in Single-Screw Extrusion by Application of Network Analysis", SPE ANTEC Tech. Papers, 605–612 (2020)Suche in Google Scholar

Rowell, H. S., Finlayson, D., “Screw Viscosity Pumps", Engineering, 114, 606–607 (1922)Suche in Google Scholar

Rowell, H. S., Finlayson, D., “Screw Viscosity Pumps", Engineering, 126, 249–387 (1928)Suche in Google Scholar

Spalding,M. A., Dooley, J., Hyun, K. S. and Strand, S. R., “Three Dimensional Analysis of the Metering Section of a Single-Screw Extruder", SPE ANTEC Tech. Papers, 1533–1541 (1993)Suche in Google Scholar

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R., “Dropout: A Simple Way to Prevent Neural Networks from Overfitting", Journal of Machine Learning Research, 15, 1929–1958 (2014)Suche in Google Scholar

Stijven, S., Minnebo, W. and Vladislavleva, K., “Separating the Wheat from the Chaff: on Feature Selection and Feature Importance in Regression Random Forests and Symbolic Regression", in Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, Dublin, p. 623–630 (2011), DOI:10.1145/2001858.200205910.1145/2001858.2002059Suche in Google Scholar

Tadmor, Z., Gogos, C. G.: Principles of Polymer Processing, 2nd Edition, Wiley, New Jersey (2006)Suche in Google Scholar

Tadmor, Z., Klein, I.: Engineering Principles of Plasticating Extrusion, Van Nostrand Reinhold, New York (1970)Suche in Google Scholar

Vachagina, E. K., Kadyirov, A. I. and Karaeva, J. V., “Simulation of Giesekus Fluid Flow in Extruder Using Helical Coordinate System", IOP Conf. Ser.: Mater. Sci. Eng., 733, 1–5 (2020), DOI:10.1088/1757-899X/733/1/01203310.1088/1757-899X/733/1/012033Suche in Google Scholar

Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A., Pitzer, E. and Affenzeller, M.: “Architecture and Design of the Heuristiclab Optimization Environment", Advanced Methods and Applications in Computational Intelligence, p. 197–261, Springer, Heidelberg (2014), DOI:10.1007/978-3-319-01436-4_1010.1007/978-3-319-01436-4_10Suche in Google Scholar

Appendix

The best performing symbolic regression model is given by:

(34) ΠV(Πp,Z,n,t/Db,h/w)=a00+a01ea02F1+A1(A2+A3)+A4A5.

with the sub-functions:

(35) A1=a03ea04h/w+a05Πp,za06( e a07F2+a08h/w+a09n+a10Πp,z )n,
(36) A2=a11(ea12Πp,z+a13n)(a14h/w+Πp,z)+a21h/w+a22n+a23Πp,z,
(37) A3=ea14F2ea16h/wea17ea18t/Db+a19F1+a20Πp,2n
(38) A4=a24e(ea25h/w+a26Πp,z)(a27F1+a28Πp,z)+a29Πp,z
(39) A5=a30+ea31t/Db(ea32h/w+a33Πp,znA6+a34t/Db),
(40) A6=a35+eea36t/Db(a37h/w+a38Πp,2)+a39F1+a40n+a41t/Db.

The derived features F1 and F2 are according to Eqs. 31 and 32, respectively. The model coefficients are given by Table 8.

Received: 2021-02-02
Accepted: 2021-04-24
Published Online: 2021-11-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Artikel in diesem Heft

  1. Contents
  2. Review article
  3. Control Strategies for Reactive Extrusion of Polypropylene by Peroxide Degradation A Brief Review and an Experimental Study
  4. Regular Contributed Articles
  5. Morphology and Tensile Properties as a Function of Welding Current in Thermoplastic Induction Welds
  6. Numerical Simulation of Fluid Flow and Mixing Dynamics inside Planetary Roller Extruders
  7. Synergistic Flame-Retardant Effect of Aluminum Diethyl Phosphinate in PP/IFR System and the Flame-Retardant Mechanism
  8. Predicting the Non-Linear Conveying Behavior in Single-Screw Extrusion: A Comparison of Various Data-Based Modeling Approaches used with CFD Simulations
  9. Influence of Crystal Structure on Thermo-Mechanical Properties of Injection Molded 𝛃-Nucleated iPP
  10. An Experimental Study on the Properties of Recycled High-Density Polyethylene
  11. Improvement of Mechanical and Biological Properties of PLA/HNT Scaffolds Fabricated by Foam Injection Molding: Skin Layer Effect and Laser Texturing
  12. Relationship between Molecular Orientation Relaxation during Physical Aging and Heat Resistance of Polystyrene Injection Moldings
  13. Recycling of Bagasse as an Agricultural Waste and its Effect as Filler on Some Mechanical and Physical Properties of SBR Composites
  14. Use of Image Analysis for Non-Destructive Testing of Thermoformed Food Packages
  15. Process Influences in the Combined Compacting and Back-Injection Process to Produce Back-Injected Self-Reinforced Composites (SRCs) – Analysis via Multiple Regression Modelling
  16. Utilizing Pyrolytic Biomass Products for Rubber Reinforcement: Effect of the Silica Content in Biomass Feed Stocks
  17. PPS News
  18. Seikei-Kakou abstracts
  19. PPS Membership application
Heruntergeladen am 29.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ipp-2020-4094/pdf
Button zum nach oben scrollen