Startseite Technik Investigating existence results for fractional evolution inclusions with order r ∈ (1, 2) in Banach space
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigating existence results for fractional evolution inclusions with order r ∈ (1, 2) in Banach space

  • Marimuthu Mohan Raja , Velusamy Vijayakumar ORCID logo EMAIL logo , Anurag Shukla , Kottakkaran Sooppy Nisar und Shahram Rezapour
Veröffentlicht/Copyright: 7. Juli 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This manuscript investigates the issue of existence results for fractional differential evolution inclusions of order r ∈ (1, 2) in the Banach space. In the beginning, we analyze the existence results by referring to the fractional calculations, cosine families, multivalued function, and Martelli’s fixed point theorem. The result is also used to investigate the existence of nonlocal fractional evolution inclusions of order r ∈ (1, 2). Finally, a concrete application is given to illustrate our main results.

MSC 2010: 34A08; 34G25; 47D09; 35R70; 34B10

Corresponding author: Velusamy Vijayakumar, Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The work was supported by the Fundo para o Desenvolvimento das Ciências e da Tecnologia of Macau (Grant No. 0074/2019/A2).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier, 2006.Suche in Google Scholar

[2] V. Lakshmikantham, S. Leela, and J. V. Devi, Theory of Fractional Dynamic Systems, Cambridge, Cambridge Scientific Publishers, 2009.Suche in Google Scholar

[3] I. Podlubny, Fractional Differential Equations, an Introduction to Fractional Derivatives, Fractional Differential Equations, to Method of Their Solution and Some of Their Applications, San Diego, CA, Academic Press, 1999.Suche in Google Scholar

[4] Y. Zhou, Basic Theory of Fractional Differential Equations, Singapore, World Scientific, 2014.10.1142/9069Suche in Google Scholar

[5] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, New York, Elsevier, 2015.10.1016/B978-0-12-804277-9.50002-XSuche in Google Scholar

[6] R. P. Agarwal, M. Benchohra, and S. Hamani, “A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions,” Acta Appl. Math., vol. 109, pp. 973–1033, 2010. https://doi.org/10.1007/s10440-008-9356-6.Suche in Google Scholar

[7] R. P. Agarwal, M. Belmekki, and M. Benchohra, “A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative,” Adv. Differ. Equ., vol. 2009, pp. 1–47, 2009. https://doi.org/10.1155/2009/981728.Suche in Google Scholar

[8] K. Balachandran and J. Y. Park, “Nonlocal Cauchy problem for abstract fractional semilinear evolution equations,” Nonlinear Anal., vol. 71, pp. 4471–4475, 2009. https://doi.org/10.1016/j.na.2009.03.005.Suche in Google Scholar

[9] C. Dineshkumar, R. Udhayakumar, V. Vijayakumar, and K. S. Nisar, “A discussion on the approximate controllability of Hilfer fractional neutral stochastic integro-differential systems,” Chaos, Solit. Fractals, vol. 142, pp. 1–12, 2020.10.1016/j.chaos.2020.110472Suche in Google Scholar

[10] K. Kavitha and V. Vijayakumar, “A discussion concerning to partial-approximate controllability of Hilfer fractional system with nonlocal conditions via approximating method,” Chaos, Solitons Fractals, vol. 157, pp. 1–9, 2022, Art no. 111924. https://doi.org/10.1016/j.chaos.2022.111924.Suche in Google Scholar

[11] K. Kavitha, V. Vijayakumar, K. S. Nisar, A. Shukla, W. Albalawi, and A. H. Abdel-Aty, “Existence and controllability of Hilfer fractional neutral differential equations with time delay via sequence method,” AIMS Math., vol. 7, no. 7, pp. 12760–12780, 2022. https://doi.org/10.3934/math.2022706.Suche in Google Scholar

[12] G. M. Mophou and G. M. N’Guerekata, “Existence of mild solution for some fractional differential equations with nonlocal conditions,” Semigroup Forum, vol. 79, no. 2, pp. 322–335, 2009. https://doi.org/10.1007/s00233-008-9117-x.Suche in Google Scholar

[13] R. Sakthivel, R. Ganesh, and S. M. Anthoni, “Approximate controllability of fractional nonlinear differential inclusions,” Appl. Math. Comput., vol. 225, pp. 708–717, 2013. https://doi.org/10.1016/j.amc.2013.09.068.Suche in Google Scholar

[14] M. Subramanian, J. Alzabut, D. Baleanu, M. E. Samei, and A. Zada, “Existence, uniqueness and stability analysis of a coupled fractional-order differential systems involving Hadamard derivatives and associated with multi-point boundary conditions,” Adv. Differ. Equ., vol. 267, pp. 1–47, 2021. https://doi.org/10.1186/s13662-021-03414-9.Suche in Google Scholar

[15] V. Vijayakumar, “Approximate controllability results for non-densely defined fractional neutral differential inclusions with Hille-Yosida operators,” Int. J. Control, vol. 92, no. 9, pp. 2210–2222, 2019. https://doi.org/10.1080/00207179.2018.1433331.Suche in Google Scholar

[16] V. Vijayakumar, C. Ravichandran, and R. Murugesu, “Existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay,” Surv. Math. Appl., vol. 9, no. 1, pp. 117–129, 2014.10.1186/1687-1847-2014-101Suche in Google Scholar

[17] V. Vijayakumar, C. Ravichandran, K. S. Nisar, and K. D. Kucche, “New discussion on approximate controllability results for fractional Sobolev type Volterra-Fredholm integro-differential systems of order 1 < r < 2,” Numer. Methods Part. Differ. Equ., pp. 1–19, 2021. https://doi.org/10.1002/num.22772.Suche in Google Scholar

[18] J. Wang and Y. Zhou, “Existence and Controllability results for fractional semilinear differential inclusions,” Nonlinear Anal.: Real World Appl., vol. 12, pp. 3642–3653, 2011. https://doi.org/10.1016/j.nonrwa.2011.06.021.Suche in Google Scholar

[19] Y. Zhou, L. Zhang, and X. H. Shen, “Existence of mild solutions for fractional evolution equations,” J. Integr. Equ. Appl., vol. 25, pp. 557–585, 2013. https://doi.org/10.1216/jie-2013-25-4-557.Suche in Google Scholar

[20] Y. Zhou, V. Vijayakumar, C. Ravichandran, and R. Murugesu, “Controllability results for fractional order neutral functional differential inclusions with infinite delay,” Fixed Point Theory, vol. 18, no. 2, pp. 773–798, 2017. https://doi.org/10.24193/fpt-ro.2017.2.62.Suche in Google Scholar

[21] Y. Zhou, V. Vijayakumar, and R. Murugesu, “Controllability for fractional evolution inclusions without compactness,” Evol. Equ. Control Theor., vol. 4, no. 4, pp. 507–524, 2015. https://doi.org/10.3934/eect.2015.4.507.Suche in Google Scholar

[22] M. S. Abdo, A. G. Ibrahim, and S. K. Panchal, “State-dependent delayed sweeping process with a noncompact perturbation in Banach spaces,” Acta Univ. Apulensis, vol. 54, no. 2, pp. 63–74, 2018.10.17114/j.aua.2018.54.10Suche in Google Scholar

[23] A. Lachouri, A. Ardjouni, F. Jarad, and M. S. Abdo, “Semilinear fractional evolution inclusion problem in the frame of a generalized Caputo operator,” J. Funct. Spaces, vol. 2021, pp. 1–9, 2021. https://doi.org/10.1155/2021/8162890.Suche in Google Scholar

[24] A. Lachouri, M. S. Abdo, A. Ardjouni, B. Abdalla, and T. Abdeljawad, “Hilfer fractional differential inclusions with Erdelyi-Kober fractional integral boundary condition,” Adv. Differ. Equ., vol. 244, pp. 1–17, 2021.10.1186/s13662-021-03397-7Suche in Google Scholar

[25] Y. Zhou and J. W. He, “New results on controllability of fractional evolution systems with order α ϵ (1, 2),” Evol. Equ. Control Theor., vol. 10, no. 3, pp. 491–509, 2021. https://doi.org/10.3934/eect.2020077.Suche in Google Scholar

[26] J. W. He, Y. Liang, B. Ahmad, and Y. Zhou, “Nonlocal fractional evolution inclusions of order α ϵ (1, 2),” Mathematics, vol. 209, no. 7, pp. 1–17, 2019. https://doi.org/10.3390/math7020209.Suche in Google Scholar

[27] Y.-Ki Ma, M. Mohan Raja, K. S. Nisar, A. Shukla, and V. Vijayakumar, “Results on controllability for Sobolev type fractional differential equations of order 1 < r < 2 with finite delay,” AIMS Math., vol. 7, no. 6, pp. 10215–10233, 2022. https://doi.org/10.3934/math.2022568.Suche in Google Scholar

[28] M. Mohan Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, and S. Rezapour, “New discussion on nonlocal controllability for fractional evolution system of order 1 < r < 2,” Adv. Differ. Equ., vol. 481, pp. 1–19, 2021.10.1186/s13662-021-03630-3Suche in Google Scholar

[29] M. Mohan Raja, V. Vijayakumar, A. Shukla, K. S. Nisar, N. Sakthivel, and K. Kaliraj, “Optimal control and approximate controllability for fractional integrodifferential evolution equations with infinite delay of order r ϵ (1, 2),” Optim. Control Appl. Methods, pp. 1–24, 2022. https://doi.org/10.1002/oca.2867.Suche in Google Scholar

[30] W. K. Williams, V. Vijayakumar, R. Udhayakumar, and K. S. Nisar, “A new study on existence and uniqueness of nonlocal fractional delay differential systems of order 1 < r < 2 in Banach spaces,” Numer. Methods Part. Differ. Equ., vol. 37, no. 2, pp. 949–961, 2021. https://doi.org/10.1002/num.22560.Suche in Google Scholar

[31] W. K. Williams, V. Vijayakumar, R. Udhayakumar, S. K. Panda, and K. S. Nisar, “Existence and controllability of nonlocal mixed Volterra-Fredholm type fractional delay integro-differential equations of order 1 < r < 2,” Numer. Methods Part. Differ. Equ., pp. 1–21, 2020. https://doi.org/10.1002/num.22697.Suche in Google Scholar

[32] M. Mohan Raja, V. Vijayakumar, N. LeHuynh, R. Udhayakumar, and K. S. Nisar, “Results on the approximate controllability of fractional hemivariational inequalities of order 1 < r < 2,” Adv. Differ. Equ., vol. 237, pp. 1–25, 2021.10.1186/s13662-021-03373-1Suche in Google Scholar

[33] C. Dineshkumar, K. S. Nisar, R. Udhayakumar, and V. Vijayakumar, “New discussion about the approximate controllability of fractional stochastic differential inclusions with order 1 < r < 2,” Asian J. Control, pp. 1–13, 2021.10.1002/asjc.2663Suche in Google Scholar

[34] A. Shukla, V. Vijayakumar, and K. S. Nisar, “A new exploration on the existence and approximate controllability for fractional semilinear impulsive control systems of order r ϵ (1, 2),” Chaos, Solitons Fractals, vol. 154, pp. 1–8111615, 2022. https://doi.org/10.1016/j.chaos.2021.111615.Suche in Google Scholar

[35] A. Singh, A. Shukla, V. Vijayakumar, and R. Udhayakumar, “Asymptotic stability of fractional order 1,2$\left(\right.1,2\left.\right]$ stochastic delay differential equations in Banach spaces,” Chaos, Solitons Fractals, vol. 150, pp. 1–9111095, 2021. https://doi.org/10.1016/j.chaos.2021.111095.Suche in Google Scholar

[36] R. Patel, A. Shukla, and S. Singh Jadon, Existence and optimal control problem for semilinear fractional order 1,2$\left(\right.1,2\left.\right]$ control system, Mathematical Methods in the Applied Sciences, 2020, pp. 1–12. https://doi.org/10.1002/mma.6662.Suche in Google Scholar

[37] M. Mohan Raja and V. Vijayakumar, “Optimal control results for Sobolev-type fractional mixed Volterra-Fredholm type integrodifferential equations of order 1 < r < 2 with sectorial operators,” Optim. Control Appl. Methods, pp. 1–14, 2022. https://doi.org/10.1002/oca.2892.Suche in Google Scholar

[38] C. C. Travis and G. F. Webb, “Cosine families and abstract nonlinear second order differential equations,” Acta Math. Hung., vol. 32, pp. 75–96, 1978. https://doi.org/10.1007/bf01902205.Suche in Google Scholar

[39] K. Deimling, Multivalued Differential Equations, Berlin, De Gruyter, 1992.10.1515/9783110874228Suche in Google Scholar

[40] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis (Theory), Dordrecht Boston, London, Kluwer Academic Publishers, 1997.10.1007/978-1-4615-6359-4Suche in Google Scholar

[41] J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, New York, Dekker, 1980.Suche in Google Scholar

[42] A. Lasota and Z. Opial, “An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map,” Bull. Acad. Pol. Sci., Ser. Sci., Math., Astron. Phys., vol. 13, pp. 781–786, 1965.Suche in Google Scholar

[43] M. Martelli, “A Rothe’s type theorem for non-compact acyclic-valued map,” Bolletino dell Unione Mat. Ital., vol. 2, pp. 70–76, 1975.Suche in Google Scholar

[44] N. Papageorgiou, “Boundary value problems for evolution inclusions,” Comment. Math. Univ. Carol., vol. 29, pp. 355–363, 1988.Suche in Google Scholar

[45] L. Byszewski, “Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem,” J. Math. Anal. Appl., vol. 162, pp. 494–505, 1991. https://doi.org/10.1016/0022-247x(91)90164-u.Suche in Google Scholar

[46] L. Byszewski and H. Akca, “On a mild solution of a semilinear functional-differential evolution nonlocal problem,” J. Appl. Math. Stoch. Anal., vol. 10, no. 3, pp. 265–271, 1997. https://doi.org/10.1155/s1048953397000336.Suche in Google Scholar

[47] G. M. N’Guerekata, “A Cauchy problem for some fractional abstract differential equation with nonlocal conditions,” Nonlinear Anal. Theory Methods Appl., vol. 70, no. 5, pp. 1873–1876, 2009.10.1016/j.na.2008.02.087Suche in Google Scholar

[48] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace Transforms and Cauchy Problems, 2nd ed. Birkhauser Basel, Birkhauser Verlag, 2011.10.1007/978-3-0348-0087-7Suche in Google Scholar

Received: 2021-09-25
Revised: 2022-05-11
Accepted: 2022-06-19
Published Online: 2022-07-07

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Frequency responses for induced neural transmembrane potential by electromagnetic waves (1 kHz to 1 GHz)
  4. Investigating existence results for fractional evolution inclusions with order r ∈ (1, 2) in Banach space
  5. Optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential
  6. Generalized forms of fractional Euler and Runge–Kutta methods using non-uniform grid
  7. Controllability of coupled fractional integrodifferential equations
  8. A new generalized approach to study the existence of solutions of nonlinear fractional boundary value problems
  9. Rational soliton solutions in the nonlocal coupled complex modified Korteweg–de Vries equations
  10. Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array
  11. Analysis and numerical effects of time-delayed rabies epidemic model with diffusion
  12. Two occurrences of fractional actions in nonlinear dynamics
  13. Multiwave interaction solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics
  14. Effects of mixed time delays and D operators on fixed-time synchronization of discontinuous neutral-type neural networks
  15. Solvability and stability of nonlinear hybrid ∆-difference equations of fractional-order
  16. Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator
  17. Simulation and modeling of different cell shapes for closed-cell LM-13 alloy foam for compressive behavior
  18. Pandemic management by a spatio–temporal mathematical model
  19. Adaptive ADI difference solution of quenching problems based on the 3D convection–reaction–diffusion equation
  20. Null controllability of Hilfer fractional stochastic integrodifferential equations with noninstantaneous impulsive and Poisson jump
  21. Application of modified Mickens iteration procedure to a pendulum and the motion of a mass attached to a stretched elastic wire
  22. Modeling the spatiotemporal intracellular calcium dynamics in nerve cell with strong memory effects
  23. Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives
  24. Improving the dynamic behavior of the plate under supersonic air flow by using nonlinear energy sink
Heruntergeladen am 8.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0368/pdf
Button zum nach oben scrollen