Startseite Technik Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array

  • Raoudha Chaabane EMAIL logo , Lioua Kolsi , Abdelmajid Jemni und Annunziata D’Orazio
Veröffentlicht/Copyright: 18. August 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This study numerically investigates the two-dimensional natural convection in a square enclosure with an isothermal diamond elliptic array at Rayleigh numbers of 104 ≤ Ra ≤ 107. Three cases are considered, i.e., case 1 where two pairs of circular heating bodies are used inside the cavity, one is placed on the vertical centerline (VC) of the cavity and the other on the horizontal centerline (HC), case 2 where one pair of horizontal elliptic heating bodies is placed on the VC of the cavity and the other on the HC and case 3 where the horizontal elliptic heating bodies are replaced by vertical elliptic heating bodies. Numerical simulation was carried out based on the mesoscopic approach (LBM). The effects of the horizontally and vertically heated arrays were investigated. We demonstrate that, only when the Rayleigh number increases to Ra = 107, the numerical solutions reach an unsteady state for all cases. The transition of the flow regime from the unsteady state to the steady state depends on the variation in the ratio of the elliptical cylinder.


Corresponding author: Raoudha Chaabane, Laboratory of Thermal and Energetic Systems Studies (LESTE) at the National School of Engineering of Monastir, University of Monastir, Monastir, Tunisia, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] G. D. V. Davis, “Natural convection of air in square cavity: a bench mark numerical solution,” Int. J. Numer. Methods Fluid., vol. 3, pp. 249–264, 1983. https://doi.org/10.1002/fld.1650030305.Suche in Google Scholar

[2] M. Hortmann, M. Peric, and G. Scheu, “Finite Volume multigrid prediction of laminar natural convection: bench-Mark solutions,” Int. J. Numer. Methods Fluid., vol. 11, no. 2, pp. 189–207, 1990. https://doi.org/10.1002/fld.1650110206.Suche in Google Scholar

[3] J. C. Patterson and S. W. Armfield, “Transient features of natural convection in a cavity,” J. Fluid Mech., vol. 219, pp. 469–497, 1990. https://doi.org/10.1017/s0022112090003032.Suche in Google Scholar

[4] B. V. K. S. Sai, K. N. Seetharamu, and P. A. A. Narayana, “Solution of transient laminar natural convection in a square cavity by an explicit finite element scheme,” Numer. Heat Tran., Part A -Appl. An Int. J. Comput. Methodol., vol. 36, no. 5, pp. 593–609, 1999.Suche in Google Scholar

[5] G. S. Mun, Y. G. Park, H. S. Yoon, M. Kim, and M. Y. Ha, “Natural convection in a cold enclosure with four hot inner cylinders based on diamond arrays (Part-I: effect of horizontal and vertical equal distance of inner cylinders),” Int. J. Heat Mass Tran., vol. 111, pp. 755–770, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.004.Suche in Google Scholar

[6] J. R. Pacheco, A. Pacheco-vega, T. Rodic, and R. E. Peck, “Numerical simulations of heat transfer and fluid flow problems using an immersed-boundary finite-volume method on non staggered grids,” Numer. Heat Tran. B, vol. 48, pp. 1–24, 2005. https://doi.org/10.1080/10407790590935975.Suche in Google Scholar

[7] H. F. Oztop and E. A. Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids,” Int. J. Heat Fluid Flow, vol. 29, pp. 1326–1336, 2008. https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009.Suche in Google Scholar

[8] C. Shu, Y. Peng, and Y. T. Chew, “Simulation of natural convection in a square cavity by Taylor series expansion and least squares-based lattice Boltzmann method,” Int. J. Mod. Phys. C, vol. 13, no. 10, pp. 1399–1414, 2002. https://doi.org/10.1142/s0129183102003966.Suche in Google Scholar

[9] Y. Peng, C. Shu, and Y. T. Chew, “Simplified thermal lattice Boltzmann model for incompressible thermal flow,” Phys. Rev. E., vol. 68, p. 026701, 2003. https://doi.org/10.1103/PhysRevE.68.026701.Suche in Google Scholar PubMed

[10] H. N. Dixit and V. Babu, “Simulation of high Rayleigh number natural convection in square cavity using the lattice Boltzmann method,” Int. J. Heat Mass Tran., vol. 49, pp. 727–739, 2006. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.046.Suche in Google Scholar

[11] J. R. Lee and M. Y. Ha, “A numerical study of natural convection in a horizontal enclosure with a conducting body,” Int. J. Heat Mass Tran., vol. 48, pp. 3308–3318, 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.026.Suche in Google Scholar

[12] A. D’Orazio and L. Fontana, “Experimental study of free convection from a pair of vertical arrays of horizontal cylinders at very low Rayleigh numbers,” Int. J. Heat Mass Tran., vol. 53, pp. 3131–3142, 2010.10.1016/j.ijheatmasstransfer.2010.03.014Suche in Google Scholar

[13] M. Goodarzi, A. D’Orazio, A. Keshavarzi, S. Mousavi, and A. Karimipour, “Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, two case studies: pure natural convection & mixed convection,” Phys. Stat. Mech. Appl., vol. 509, pp. 210–233, 2018. https://doi.org/10.1016/j.physa.2018.06.013.Suche in Google Scholar

[14] A. D’Orazio, A. Karimipour, A. H. Nezhad, and E. Shirani, “Lattice Boltzmann Method with heat flux boundary condition applied to mixed convection in inclined lid driven cavity,” Meccanica, vol. 50, no. 4, pp. 945–962, 2015.10.1007/s11012-014-0052-5Suche in Google Scholar

[15] H. K. Park, M. Y. Ha, H. S. Yoon, Y. G. Park, and C. Son, “A numerical study on natural convection in an inclined square enclosure with a circular cylinder,” Int. J. Heat Mass Tran., vol. 66, pp. 295–314, 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.029.Suche in Google Scholar

[16] N. K. Ghaddar, “Natural convection heat transfer between a uniformly heated cylindrical element and its rectangular enclosure,” Int. J. Heat Mass Tran., vol. 35, pp. 2327–2334, 1992. https://doi.org/10.1016/0017-9310(92)90075-4.Suche in Google Scholar

[17] F. Moukalled and S. Acharya, “Natural convection in the annulus between concentric horizontal circular and square cylinders,” J. Thermophys. Heat Tran., vol. 10, pp. 524–553, 1996. https://doi.org/10.2514/3.820.Suche in Google Scholar

[18] A. Mezrhab, M. A. Moussaoui, and H. Naji, “Lattice Boltzmann simulation of surface radiation and natural convection in a square cavity with an inner cylinder,” J. Phys. Appl. Phys., vol. 41, no. 11, p. 115502, 2008. https://doi.org/10.1088/0022-3727/41/11/115502.Suche in Google Scholar

[19] B. S. Kim, D. S. Lee, M. Y. Ha, and H. S. Yoon, “A numerical study of natural convection in a square enclosure with a circular cylinder at different vertical locations,” Int. J. Heat Mass Tran., vol. 51, pp. 1888–1906, 2008. https://doi.org/10.1016/j.ijheatmasstransfer.2007.06.033.Suche in Google Scholar

[20] D. H. Kang, M. Y. Ha, H. S. Yoon, and C. Choi, “Bifurcation to unsteady natural convection in square enclosure with a circular cylinder at Rayleigh number of 107,” Int. J. Heat Mass Tran., vol. 64, p. 926–944, 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2013.05.002.Suche in Google Scholar

[21] G. S. Mun, Y. G. Park, H. S. Yoon, M. Kim, and M. Y. Ha, “Natural convection in a cold enclosure with four hot inner cylinders based on diamond arrays (Part-I: effect of horizontal and vertical equal distance of inner cylinders),” Int. J. Heat Mass Tran., vol. 111, pp. 755–770, 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.004.Suche in Google Scholar

[22] Y. G. Park, H. S. Yoon, and M. Y. Ha, “Natural convection in square enclosure with hot and cold cylinders at different vertical locations,” Int. J. Heat Mass Tran., vol. 55, pp. 7911–7925, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.012.Suche in Google Scholar

[23] Y. G. Park, M. Y. Ha, and H. S. Yoon, “Study on natural convection in a cold square enclosure with a pair of hot horizontal cylinders positioned at different vertical locations,” Int. J. Heat Mass Tran., vol. 65, pp. 696–712, 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.059.Suche in Google Scholar

[24] H. Bararnia, S. Soleimani, and D. D. Ganji, “Lattice Boltzmann simulation of natural convection around a horizontal elliptic cylinder inside a square enclosure,” Int. Commun. Heat Mass Tran., vol. 38, pp. 1436–1442, 2011. https://doi.org/10.1016/j.icheatmasstransfer.2011.07.012.Suche in Google Scholar

[25] M. C. Lai and C. S. Peskin, “An immersed boundary method with formal second-order accuracy and reduced numerical viscosity,” J. Comput. Phys., vol. 160, no. 2, pp. 705–719, 2000. https://doi.org/10.1006/jcph.2000.6483.Suche in Google Scholar

[26] Y. G. Park, M. Y. Ha, and J. Park, “Natural convection in a square enclosure with four circular cylinders generated at different rectangular locations,” Int. J. Heat Mass Tran., vol. 81, pp. 490–511, 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.065.Suche in Google Scholar

[27] C. C. Liao and C. A. Lin, “Influences of a confined elliptic cylinder at different aspect ratio and inclinations on the laminar natural and mixed convection flows,” Int. J. Heat Mass Tran., vol. 55, pp. 6638–6650, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.073.Suche in Google Scholar

[28] Y. G. Park, M. Y. Ha, C. Choi, and J. Park, “Natural convection in a square enclosure with two inner circular cylinders generated at different vertical locations,” Int. J. Heat Mass Tran., vol. 77, pp. 501–518, 2014. https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.041.Suche in Google Scholar

[29] Y. D. Zhu, C. Shu, J. Qi, and J. Tani, “Numerical simulation of natural convection between two elliptical cylinders using DQ method,” Int. J. Heat Mass Tran., vol. 47, pp. 797–808, 2004. https://doi.org/10.1016/j.ijheatmasstransfer.2003.06.005.Suche in Google Scholar

[30] H. K. Dawood, H. A. Mohammed, and K. M. Munisamy, “Heat transfer augmentation using nanofluids in an elliptic annulus with constant heat flux boundary condition,” Case Stud. Therm. Eng., vol. 4, pp. 32–41, 2014. https://doi.org/10.1016/j.csite.2014.06.001.Suche in Google Scholar

[31] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and beyond, New York, Oxford University Press, 2001.10.1093/oso/9780198503989.001.0001Suche in Google Scholar

[32] C. Raoudha, A. Jemni, and P. Perré, “Lattice Boltzmann Simulation for flow inside porous Open-ended medium with partially thermally active walls,” J. Heat Tran., vol. 143, no. 11, p. 114502, 2021.10.1115/1.4051837Suche in Google Scholar

[33] C. Raoudha, A. D’Orazio, A. Jemni, A. Karimipour, and R. Ranjbarzadeh, “Convection inside nanofluid cavity with mixed partially boundary conditions,” Energies, vol. 14, no. 20, p. 6448, 2021.10.3390/en14206448Suche in Google Scholar

[34] R. Chaabane, F. Askri, and S. B. Nasrallah, “Parametric study of simultaneous transient conduction and radiation in a two-dimensional participating medium,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, no. 10, pp. 4006–4020, 2011. https://doi.org/10.1016/j.cnsns.2011.02.027.Suche in Google Scholar

[35] R. Chaabane, F. Askri, and S. B. Nasrallah, “Analysis of two-dimensional transient conduction-radiation problems in an anisotropically scattering participating enclosure using the lattice Boltzmann method and the control volume finite element method,” J. Comput. Phys. Commun., vol. 182, no. 7, pp. 1402–1413, 2011. https://doi.org/10.1016/j.cpc.2011.03.006.Suche in Google Scholar

[36] R. Chaabane, F. Askri, and S. B. Nasrallah, “Application of the lattice Boltzmann method to transient conduction and radiation heat transfer in cylindrical media,” J. Quant. Spectrosc. Radiat. Transf., vol. 112, no. 2, pp. 2013–2027, 2011. https://doi.org/10.1016/j.jqsrt.2011.04.002.Suche in Google Scholar

[37] R. Chaabane, F. Askri, and S. B. Nasrallah, “A new hybrid algorithm for solving transient combined conduction radiation heat transfer problems,” J. Therm. Sci., vol. 15, no. 3, pp. 649–662, 2011. https://doi.org/10.2298/tsci100722015c.Suche in Google Scholar

[38] R. Chaabane, F. Askri, and S. B. Nasrallah, “Numerical modeling of boundary conditions for two dimensional conduction heat transfer equation using lattice Boltzmann method,” Int. J. Heat Technol., vol. 28, no. 2, pp. 53–60, 2010.Suche in Google Scholar

[39] R. Chaabane, F. Askri, and S. B. Nasrallah, “Coupled numerical approach for combined mode of heat transfer,” International Journal of Heat and Technology, vol. 29, no. 2, pp. 25–32, 2011.Suche in Google Scholar

[40] R. Chaabane, F. Askri, and S. B. Nasrallah, “Numerical study of transient free convection with volumetric radiation using an hybrid lattice Boltzmann BGK-control volume finite and element method,” J. Heat Tran., vol. 139, no. 9, 2017. https://doi.org/10.1115/1.4036154.Suche in Google Scholar

[41] R. Chaabane, F. Askri, A. Jemni, and S. B. Nasrallah, “Analysis of Rayleigh-Bénard convection with thermal volumetric radiation using Lattice Boltzmann Formulation,” J. Therm. Sci. Technol., vol.12, no. 2, p. 0020, 2017. https://doi.org/10.1299/jtst.2017jtst0020.Suche in Google Scholar

[42] R. Chaabane, L. Kolsi, A. Jemni, N. Alshammari, and A. Annunziata D’Orazio, “Numerical study of the Rayleigh bénard convection in 2D cavities heated by elliptical heat sources using LBM,” Phys. Fluids, vol. 33, p. 123605, 2021. https://doi.org/10.1063/5.0073856.Suche in Google Scholar

[43] A. D’Orazio, S. Succi, and C. Arrighetti, “Lattice Boltzmann simulation of open flows with heat transfer,” Phys. Fluids, vol. 15, no. 9, pp. 2778–2781, 2003.10.1063/1.1597681Suche in Google Scholar

[44] Y. Hu, X. D. Niu, S. Shu, H. Yuan, and M. Li, “Natural convection in a concentric annulus: a lattice Boltzmann method study with boundary condition-enforced immersed boundary method,” Adv. Appl. Math. Mech., vol. 5, no. 3, pp. 321–336, 2013. https://doi.org/10.4208/aamm.12-m12116.Suche in Google Scholar

[45] R. Mei, L. S. Luo, and W. Shyy, “An accurate curved boundary treatment in the lattice Boltzmann method,” J. Comput. Phys., vol. 155, pp. 307–330, 1999. https://doi.org/10.1006/jcph.1999.6334.Suche in Google Scholar

[46] R. Mei, D. Yu, W. Shyy, and L. Sh. Luo, “Force evaluation in the lattice Boltzmann method involving curved geometry,” Phys. Rev. E, vol. 65, pp. 1–14, 2002. https://doi.org/10.1103/PhysRevE.65.041203.Suche in Google Scholar PubMed

[47] D. Yu, R. Mei, L. S. Luo, and W. Shyy, “Viscous flow computations with the method of lattice Boltzmann equation,” Prog. Aero. Sci., vol. 39, pp. 329–367, 2003. https://doi.org/10.1016/s0376-0421(03)00003-4.Suche in Google Scholar

[48] D. Yu, R. Mei, and W. Shyy, A Unified Boundary Treatment in Lattice Boltzmann Method, New York, American Institute of Aeronautics and Astronautics, 2003, 2003–0953.10.2514/6.2003-953Suche in Google Scholar

[49] L. Zhang, Z. Zeng, H. Xie, X. Tao, Y. Zhang, Y. Lu, A. Yoshikawa, and Y. Kawazoe, “An alternative second order scheme for curved boundary condition in lattice Boltzmann method,” Comput. Fluids, vol. 14, pp. 193–202, 2015. https://doi.org/10.1016/j.compfluid.2015.03.006.Suche in Google Scholar

[50] Z. L. Guo, Ch Zheng, and B. C. Shi, “An extrapolation method for boundary conditions in lattice Boltzmann method,” Phys. Fluids, vol. 14, no. 6, pp. 2007–2010, 2002. https://doi.org/10.1063/1.1471914.Suche in Google Scholar

[51] H. Huang, T. S. Lee, and C. Shu, “Thermal curved boundary treatment for the thermal lattice Boltzmann equation,” Int. J. Mod. Phys. C, vol. 17, no. 5, pp. 631–643, 2006. https://doi.org/10.1142/s0129183106009059.Suche in Google Scholar

Received: 2021-02-19
Revised: 2022-03-31
Accepted: 2022-06-19
Published Online: 2022-08-18

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Original Research Articles
  3. Frequency responses for induced neural transmembrane potential by electromagnetic waves (1 kHz to 1 GHz)
  4. Investigating existence results for fractional evolution inclusions with order r ∈ (1, 2) in Banach space
  5. Optimal control of non-instantaneous impulsive second-order stochastic McKean–Vlasov evolution system with Clarke subdifferential
  6. Generalized forms of fractional Euler and Runge–Kutta methods using non-uniform grid
  7. Controllability of coupled fractional integrodifferential equations
  8. A new generalized approach to study the existence of solutions of nonlinear fractional boundary value problems
  9. Rational soliton solutions in the nonlocal coupled complex modified Korteweg–de Vries equations
  10. Buoyancy driven flow characteristics inside a cavity equiped with diamond elliptic array
  11. Analysis and numerical effects of time-delayed rabies epidemic model with diffusion
  12. Two occurrences of fractional actions in nonlinear dynamics
  13. Multiwave interaction solutions for a (3 + 1)-dimensional B-type Kadomtsev–Petviashvili equation in fluid dynamics
  14. Effects of mixed time delays and D operators on fixed-time synchronization of discontinuous neutral-type neural networks
  15. Solvability and stability of nonlinear hybrid ∆-difference equations of fractional-order
  16. Weak and strong boundedness for p-adic fractional Hausdorff operator and its commutator
  17. Simulation and modeling of different cell shapes for closed-cell LM-13 alloy foam for compressive behavior
  18. Pandemic management by a spatio–temporal mathematical model
  19. Adaptive ADI difference solution of quenching problems based on the 3D convection–reaction–diffusion equation
  20. Null controllability of Hilfer fractional stochastic integrodifferential equations with noninstantaneous impulsive and Poisson jump
  21. Application of modified Mickens iteration procedure to a pendulum and the motion of a mass attached to a stretched elastic wire
  22. Modeling the spatiotemporal intracellular calcium dynamics in nerve cell with strong memory effects
  23. Switched coupled system of nonlinear impulsive Langevin equations involving Hilfer fractional-order derivatives
  24. Improving the dynamic behavior of the plate under supersonic air flow by using nonlinear energy sink
Heruntergeladen am 8.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/ijnsns-2021-0073/pdf
Button zum nach oben scrollen